The Results of SAT Competition 2020

Tomáš Balyo, Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda

SAT 2020 Conference, Alghero, Italy (virtually)

July 8, 2020
SAT Solver Competitions

Goals

- identify new challenging benchmarks
- promote SAT solvers and their development
- "snapshot" evaluation of current solvers

Long tradition, starting from 1992

- 3 competitions in the 90s (1992, 1993, 1996)
- 13 SAT Competitions (2002–)
- 1 SAT Challenge (2012)
Key rules

- Certified results of unsatisfiability using DRAT proof logging
- Disqualification of buggy solvers
 - Producing an incorrect model
 - Report UNSAT on a known satisfiable instance
 - Proof checker finds inconsistency (demoted to no-limit)
- Mandatory solver descriptions + open source
- Ranking scheme: PAR-2
 - Favors solvers that are faster (not only count solved instances)
- BYOB (Bring Your Own Benchmarks)
 - At most 20 instances per participant are used
What is New This Year

- We have two new tracks
 - Cloud Track – evaluate distributed solvers on the Amazon cloud. Solvers are run on 1600 virtual cores for 1000 seconds. Sponsored by Amazon. Participants received AWS credit to develop their solvers.
 - Planning Track – dedicated benchmark suite on 200 planning instances. Future competitions will have special benchmark suites for other applications.
- New formally-verified checker
 - cake_lpr_array by Yong Kiam Tan: very easy to install
Benchmark Instance Selection

GBD Benchmark Database (GBD)

- Collaborative Management of Attributes of Benchmark Instances
 https://pypi.org/project/global-benchmark-database-tool

- Retrieval of Benchmark Instances by their Attributes
 https://gbd.iti.kit.edu

Tracks part 1

- **Main (Sequential) Track (50 solvers)**
 - 400 benchmarks, a combination of “application” and “crafted”
 - 5,000 sec limit for solving and 40,000 sec for proof checking
 - Solvers run on a single core
 - UNSAT proof logging required

- **Parallel Track (14 solvers)**
 - The same 400 benchmarks from Main track
 - 5,000 sec limit for solving

- **Cloud Track (6 solvers)**
 - The same 400 benchmarks from Main track
 - 1,000 sec limit for solving
 - 100 AWS m4.4xlarge: total of 1600 virtual CPU cores
Tracks part 1

- **Main (Sequential) Track (50 solvers)**
 - 400 benchmarks, a combination of “application” and “crafted”
 - 5,000 sec limit for solving and 40,000 sec for proof checking
 - Solvers run on a single core
 - UNSAT proof logging required

- **Parallel Track (14 solvers)**
 - The same 400 benchmarks from Main track
 - 5,000 sec limit for solving
 - 1 AWS m4.16xlarge: 64 virtual CPU cores, 256GB RAM
Tracks part 1

- **Main (Sequential) Track (50 solvers)**
 - 400 benchmarks, a combination of “application” and “crafted”
 - 5,000 sec limit for solving and 40,000 sec for proof checking
 - Solvers run on a single core
 - UNSAT proof logging required

- **Parallel Track (14 solvers)**
 - The same 400 benchmarks from Main track
 - 5,000 sec limit for solving
 - 1 AWS m4.16xlarge: 64 virtual CPU cores, 256GB RAM

- **Cloud Track (6 solvers)**
 - The same 400 benchmarks from Main track
 - 1,000 sec limit for solving
 - 100 AWS m4.4xlarge: total of 1600 virtual CPU cores
Tracks part 2

- **Incremental Library Track (5 solvers)**
 - benchmarks are SAT based applications (bones, essentials, lsp, max, ijtihad, pasar), we used same applications but with different inputs
 - combined rank for each application determines winner
 - 2,000 sec limit for solving
Tracks part 2

- Incremental Library Track (5 solvers)
 - benchmarks are SAT based applications (bones, essentials, lisp, max, ijtihad, pasar), we used same applications but with different inputs
 - combined rank for each application determines winner
 - 2,000 sec limit for solving

- Planning Track (49 solvers)
 - 200 benchmarks, all coming from planning problems
 - 5,000 sec limit for solving
Tracks part 2

- Incremental Library Track (5 solvers)
 - benchmarks are SAT based applications (bones, essentials, lsp, max, ijtihad, pasar), we used same applications but with different inputs
 - combined rank for each application determines winner
 - 2,000 sec limit for solving

- Planning Track (49 solvers)
 - 200 benchmarks, all coming from planning problems
 - 5,000 sec limit for solving

- No-Limit Track (64 solvers, superset of Main track participants)
 - 300 brand new benchmarks (subset of the Main Track benchmarks)
 - 5,000 sec limit for solving
 - Most of the solvers provided source codes and models, but not all
 - No awards: top solvers were open source and proof producing
The Top 3 solvers of the Planning Track are:

1. CaDiCaL-alluip-trail (PAR-2: 3406, 80 solved) by Randy Hickey, Nick Feng, and Fahiem Bacchus
2. Cryptominisat-ccnr-lsids (PAR-2: 3441, 79 solved) by Mate Soos, Shaowei Cai, Jo Devriendt, Stephan Gocht, Arijit Shaw, and Kuldeep Meel
3. Kissat-sc2020-unsat (PAR-2: 3472, 74 solved) by Armin Biere
The Top 3 solvers of the Planning Track are:

1. **CaDiCaL-alluip-trail** (PAR-2: 3406, 80 solved) by Randy Hickey, Nick Feng, and Fahiem Bacchus
2. **Cryptominisat-ccnr-lsids** (PAR-2: 3441, 79 solved) by Mate Soos, Shaowei Cai, Jo Devriendt, Stephan Gocht, Arijit Shaw, and Kuldeep Meel
3. **Kissat-sc2020-unsat** (PAR-2: 3472, 74 solved) by Armin Biere

SAT Competition 2020
July 8, 2020
The Top 3 solvers of the Planning Track are:

2 **Cryptominisat-ccnr-lsids** (PAR-2: 3441, 79 solved)
Cryptominisat-ccnr (PAR-2: 3446, 79 solved)
by Mate Soos, Shaowei Cai, Jo Devriendt, Stephan Gocht, Arijit Shaw, and Kuldeep Meel

3 **Kissat-sc2020-unsat** (PAR-2: 3472, 74 solved)
by Armin Biere
Planning Track – Results

The Top 3 solvers of the Planning Track are:

1. **CaDiCaL-alluip-trail** (PAR-2: 3406, 80 solved)
 CaDiCaL-alluip (PAR-2: 3409, 80 solved)
 by Randy Hickey, Nick Feng, and Fahiem Bacchus

2. **Cryptominisat-ccnr-lsids** (PAR-2: 3441, 79 solved)
 Cryptominisat-ccnr (PAR-2: 3446, 79 solved)
 by Mate Soos, Shaowei Cai, Jo Devriendt, Stephan Gocht, Arijit Shaw, and Kuldeep Meel

3. **Kissat-sc2020-unsat** (PAR-2: 3472, 74 solved)
 by Armin Biere
Planning Track – Results

The Top 3 solvers of the Planning Track are:

1. **CaDiCaL-alluip-trail** (PAR-2: 3406, 80 solved)
 CaDiCaL-alluip (PAR-2: 3409, 80 solved)
 by Randy Hickey, Nick Feng, and Fahiem Bacchus

2. **Cryptominisat-ccnr-lsids** (PAR-2: 3441, 79 solved)
 Cryptominisat-ccnr (PAR-2: 3446, 79 solved)
 by Mate Soos, Shaowei Cai, Jo Devriendt, Stephan Gocht, Arijit Shaw, and Kuldeep Meel

3. **Kissat-sc2020-unsat** (PAR-2: 3472, 74 solved)
 by Armin Biere

Unfortunately, no planning specific solvers
Incremental Library Track

- 6 applications (bones, essentials, lsp, max, ijtihad, pasar)
- 50 benchmark instances per application
- Ranking by PAR-2 (2000 seconds timeout)
- Final Ranking: Number of Won Categories

<table>
<thead>
<tr>
<th></th>
<th>abcdsat-i20</th>
<th>CaDiCaL-sc2020</th>
<th>Cryptominisat5</th>
<th>Riss-7.1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>bones</td>
<td>513 (46)</td>
<td>631 (43)</td>
<td>390 (46)</td>
<td>903 (40)</td>
</tr>
<tr>
<td>essentials</td>
<td>1333 (35)</td>
<td>1210 (37)</td>
<td>1200 (36)</td>
<td>1241 (36)</td>
</tr>
<tr>
<td>lsp</td>
<td>2495 (21)</td>
<td>1959 (26)</td>
<td>1789 (29)</td>
<td>1881 (27)</td>
</tr>
<tr>
<td>ijtihad</td>
<td>3238 (10)</td>
<td>3002 (13)</td>
<td>3079 (12)</td>
<td>3145 (11)</td>
</tr>
<tr>
<td>pasar</td>
<td>471 (45)</td>
<td>506 (45)</td>
<td>969 (38)</td>
<td>386 (46)</td>
</tr>
<tr>
<td>final</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Winner: **Cryptominisat5**
Parallel Track SAT – Results

The Top 3 solvers of the Parallel Track SAT are:

1. P-MCOMSPS-STR-32 (PAR-2: 2853, 153 solved) by Vincent Vallade, Ludovic Le Frioux, Souheib Baarir, Julien Sopena, and Fabrice Kordon
2. PaInleSS ExMapleLCMDistChronoBT (PAR-2: 2913, 154 solved) by Rodrigue Konan Tchinda and Clément Tayou Djamegni
3. abcd-para-scavel (PAR-2: 3405, 143 solved) by Zhihui Li, Guanfeng Wu, Yanh Xu, and Qingshan Chen
The Top 3 solvers of the Parallel Track SAT are:

1. P-MCOMSPS-STR-32 (PAR-2: 2853, 153 solved) by Vincent Vallade, Ludovic Le Frioux, Souheib Baarir, Julien Sopena, and Fabrice Kordon

2. PaInleSS ExMapleLCMDistChronoBT (PAR-2: 2913, 154 solved) by Rodrigue Konan Tchinda and Clément Tayou Djamegni

3. abcd-para-scavel (PAR-2: 3405, 143 solved) by Zhihui Li, Guanfeng Wu, Yanh Xu, and Qingshan Chen
The Top 3 solvers of the Parallel Track SAT are:

2. **PaInleSS ExMapleLCMDistChronoBT** (PAR-2: 2913, 154 solved)
 by Rodrigue Konan Tchinda and Clémentin Tayou Djamegni

3. **abcd-para-scavel** (PAR-2: 3405, 143 solved)
 by Zhihui Li, Guanfeng Wu, Yanh Xu, and Qingshan Chen
Parallel Track SAT – Results

The Top 3 solvers of the Parallel Track SAT are:

1. **P-MCOMSPS-STR-32** (PAR-2: 2853, 153 solved)
 by Vincent Vallade, Ludovic Le Frioux, Souheib Baarir, Julien Sopena, and Fabrice Kordon

2. **PaInleSS _ExMapleLCMDistChronoBT** (PAR-2: 2913, 154 solved)
 by Rodrigue Konan Tchinda and Clémentin Tayou Djamegni

3. **abcd-para-scavel** (PAR-2: 3405, 143 solved)
 by Zhihui Li, Guanfeng Wu, Yanh Xu, and Qingshan Chen
The Top 3 solvers of the Parallel Track UNSAT are:
Parallel Track UNSAT – Results

The Top 3 solvers of the Parallel Track UNSAT are:

1. Plingeling (PAR-2: 3630, 137 solved) by Armin Biere
2. P-MCOMSPS-STR-32 (PAR-2: 3729, 131 solved) by Vincent Vallade, Ludovic Le Frioux, Souheib Baarir, Julien Sopena, and Fabrice Kordon
The Top 3 solvers of the Parallel Track UNSAT are:

2. **P-MCOMSPS-STR-32** (PAR-2: 3729, 131 solved)
 by Vincent Vallade, Ludovic Le Frioux, Souheib Baarir, Julien Sopena, and Fabrice Kordon

3. **ManyGlucose-32** (PAR-2 3844, 131 solved)
 ManyGlucose-64 (PAR-2: 3974, 129 solved)
 by Hidetomo Nabeshima and Katsumi Inoue
The Top 3 solvers of the Parallel Track UNSAT are:

1. **Plingeling** (PAR-2: 3630, 137 solved)
 by Armin Biere

2. **P-MCOMSPS-STR-32** (PAR-2: 3729, 131 solved)
 by Vincent Vallade, Ludovic Le Frioux, Souheib Baarir, Julien Sopena, and Fabrice Kordon

3. **ManyGlucose-32** (PAR-2 3844, 131 solved)
 ManyGlucose-64 (PAR-2: 3974, 129 solved)
 by Hidetomo Nabeshima and Katsumi Inoue
The Top 3 solvers of the Parallel Track ALL are:

1. P-MCOMSPS-STR-32 (PAR-2: 3291, 284 solved) by Vincent Vallade, Ludovic Le Frioux, Souheib Baarir, Julien Sopena, and Fabrice Kordon
2. Plingeling (PAR-2: 3718, 270 solved) by Armin Biere
3. abcd-para-scavel (PAR-2: 3797, 270 solved) by Zhihui Li, Guanfeng Wu, Yanh Xu, and Qingshan Chen
The Top 3 solvers of the Parallel Track ALL are:

1. P-MCOMSPS-STR-32 (PAR-2: 3291, 284 solved) by Vincent Vallade, Ludovic Le Frioux, Souheib Baarir, Julien Sopena, and Fabrice Kordon
2. Plingeling (PAR-2: 3718, 270 solved) by Armin Biere
3. abcd-para-scavel (PAR-2: 3797, 270 solved) by Zhihui Li, Guanfeng Wu, Yanh Xu, and Qingshan Chen
The Top 3 solvers of the Parallel Track ALL are:

2 **Plingeling** (PAR-2: 3718, 270 solved)
 by Armin Biere

3 **abcd-para-scavel** (PAR-2: 3797, 270 solved)
 by Zhihui Li, Guanfeng Wu, Yanh Xu, and Qingshan Chen
Parallel Track ALL – Results

The Top 3 solvers of the Parallel Track ALL are:

1. **P-MCOMSPS-STR-32** (PAR-2: 3291, 284 solved)
 P-MCOMSPS-STR-64 (PAR-2: 3689, 272 solved)
 by Vincent Vallade, Ludovic Le Frioux, Souheib Baarir, Julien Sopena, and Fabrice Kordon

2. **Plingeling** (PAR-2: 3718, 270 solved)
 by Armin Biere

3. **abcd-para-scavel** (PAR-2: 3797, 270 solved)
 by Zhihui Li, Guanfeng Wu, Yanh Xu, and Qingshan Chen
Cloud Track – Results

The Top 3 solvers of the Cloud Track are:

1. mallob-mono (PAR-2: 2429, 306 solved) by Dominik Schreiber
2. TopoSAT2 (PAR-2: 3024, 283 solved) by Thorsten Ehlers, Mitja Kulczynski, Dirk Nowotka, and Philipp Sieweck
3. Slime (PAR-2 4208, 239 solved) by Oscar Riveros
The Top 3 solvers of the Cloud Track are:

3. **Slime** (PAR-2 4208, 239 solved)
 by Oscar Riveros
Cloud Track – Results

The Top 3 solvers of the Cloud Track are:

2 **TopoSAT2** (PAR-2: 3024, 283 solved)
 by Thorsten Ehlers, Mitja Kulczynski, Dirk Nowotka, and Philipp Sieweck

3 **Slime** (PAR-2 4208, 239 solved)
 by Oscar Riveros
The Top 3 solvers of the Cloud Track are:

1. **mallob-mono** (PAR-2: 2429, 306 solved)
 by Dominik Schreiber

2. **TopoSAT2** (PAR-2: 3024, 283 solved)
 by Thorsten Ehlers, Mitja Kulczynski, Dirk Nowotka, and Philipp Sieweck

3. **Slime** (PAR-2 4208, 239 solved)
 by Oscar Riveros
The Top 3 solvers of the Main Track SAT are:
Main Track SAT – Results

The Top 3 solvers of the Main Track SAT are:

1. Relaxed LCMDCBDL (PAR-2: 2997, 150 solved) by Xindi Zhang and Shaowei Cai
2. Kissat-sc2020-sat (PAR-2: 3128, 146 solved) by Armin Biere
3. Cryptominisat-ccnr-lsids (PAR-2: 3263, 144 solved)
 Cryptominisat-ccnr (PAR-2: 3317, 145 solved)
 by Mate Soos, Shaowei Cai, Jo Devriendt, Stephan Gocht, Arijit Shaw, and Kuldeep Meel
The Top 3 solvers of the Main Track SAT are:

2 **Kissat-sc2020-sat** (PAR-2: 3128, 146 solved)
 by Armin Biere

3 **Cryptominisat-ccnr-Isids** (PAR-2: 3263, 144 solved)
 Cryptominisat-ccnr (PAR-2: 3317, 145 solved)
 by Mate Soos, Shaowei Cai, Jo Devriendt, Stephan Gocht,
 Arijit Shaw, and Kuldeep Meel
The Top 3 solvers of the Main Track SAT are:

1. **Relaxed_LCMDCBDL_newTech** (PAR-2: 2997, 150 solved)
 by Xindi Zhang and Shaowei Cai

2. **Kissat-sc2020-sat** (PAR-2: 3128, 146 solved)
 by Armin Biere

3. **Cryptominisat-ccnr-Isids** (PAR-2: 3263, 144 solved)
 Cryptominisat-ccnr (PAR-2: 3317, 145 solved)
 by Mate Soos, Shaowei Cai, Jo Devriendt, Stephan Gocht, Arijit Shaw, and Kuldeep Meel
Main Track SAT – Top 10 Plot

CPU time

solved instances (SAT)

0 1,000 2,000 3,000 4,000 5,000

0 50 100 150

Relaxed_LCMDCBDL_newTech
Kissat-se2020-sat
cryptominisat-ccnr-lsids
cadical-alluip-trail
abcdsat_n20
Undominated-LC-MapleLCMDiscChronoBT-DL
MapleLCMDistChronoBT-DL-f2trc
optsatm20
ExMapleLCMDistChronoBT_DL
DurianSat
The Top 3 solvers of the Main Track UNSAT are:

1. Kissat-sc2020-unsat (PAR-2: 4315, 124 solved)
2. Kissat-sc2020-default (PAR-2: 4336, 126 solved)

by Armin Biere

2. CaDiCaL-trail (PAR-2: 4842, 117 solved)
 by Randy Hickey, Nick Feng, and Fahiem Bacchus

3. MapleLCMDistChronoBT-f2trc-s (PAR-2: 4991, 110 solved)
 by Stepan Kochemazov

Balyo, Froleyks, Heule, Iser, Järvisalo, Suda
Main Track UNSAT – Results

The Top 3 solvers of the Main Track UNSAT are:

1. Kissat-sc2020-unsat (PAR-2: 4315, 124 solved)
2. Kissat-sc2020-default (PAR-2: 4336, 126 solved)

by Armin Biere

3. MapleLCMDistChronoBT-f2trc-s (PAR-2: 4991, 110 solved)
by Stepan Kochemazov
The Top 3 solvers of the Main Track UNSAT are:

2. **CaDiCaL-trail** (PAR-2: 4842, 117 solved)
 by Randy Hickey, Nick Feng, and Fahiem Bacchus

3. **MapleLCMDistChronoBT-f2trc-s** (PAR-2: 4991, 110 solved)
 by Stepan Kochemazov
Main Track UNSAT – Results

The Top 3 solvers of the Main Track UNSAT are:

1. **Kissat-sc2020-unsat** (PAR-2: 4315, 124 solved)
 Kissat-sc2020-default (PAR-2: 4336, 126 solved)
 Kissat-sc2020-sat (PAR-2: 4725, 118 solved)
 by Armin Biere

2. **CaDiCaL-trail** (PAR-2: 4842, 117 solved)
 by Randy Hickey, Nick Feng, and Fahiem Bacchus

3. **MapleLCMDistChronoBT-f2trc-s** (PAR-2: 4991, 110 solved)
 by Stepan Kochemazov
Main Track UNSAT – Top 10 Plot

The plot shows the solved instances (UNSAT) over CPU time for various SAT solvers. The solvers are:

- Kissat-sc2020-unsat
- cadical-trail
- MapleLCMDistChronoBT-f2trc-s
- mergesat
- Maple mix
- SLIME
- MapleLCMDistChronoBT-DL-v3
- ExMapleLCMDistChronoBT_DL
- Undominated-LC-MapleLCMDiscChronoBT-DL
- DurianSat

The x-axis represents CPU time in seconds, and the y-axis represents the number of solved instances (UNSAT).
The Top 3 solvers of the Main Track ALL are:

1. Kissat-sc2020-sat (PAR-2: 3926, 264 solved)
 by Armin Biere

2. Relaxed LCMDBDL newTech (PAR-2: 4179, 253 solved)
 by Xindi Zhang and Shaowei Cai

3. Cryptominisat-ccnr-lsids (PAR-2: 4267, 248 solved)
 Cryptominisat-ccnr (PAR-2: 4278, 250 solved)
 by Mate Soos, Shaowei Cai, Jo Devriendt, Stephan Gocht, Arijit Shaw, and Kuldeep Meel
Main Track ALL – Results

The Top 3 solvers of the Main Track ALL are:

1. Kissat-sc2020-sat (PAR-2: 3926, 264 solved)
 by Armin Biere

2. Relaxed LCMDCBDL newTech (PAR-2: 4179, 253 solved)
 by Xindi Zhang and Shaowei Cai

3. Cryptominisat-ccnr-lsids (PAR-2: 4267, 248 solved)
 Cryptominisat-ccnr (PAR-2: 4278, 250 solved)
 by Mate Soos, Shaowei Cai, Jo Devriendt, Stephan Gocht,
 Arijit Shaw, and Kuldeep Meel
The Top 3 solvers of the Main Track ALL are:

2. **Relaxed_LCMDCBDL_newTech** (PAR-2: 4179, 253 solved)
 by Xindi Zhang and Shaowei Cai

3. **Cryptominisat-ccnr-Isids** (PAR-2: 4267, 248 solved)
 Cryptominisat-ccnr (PAR-2: 4278, 250 solved)
 by Mate Soos, Shaowei Cai, Jo Devriendt, Stephan Gocht,
 Arijit Shaw, and Kuldeep Meel
The Top 3 solvers of the Main Track ALL are:

1. **Kissat-sc2020-sat** (PAR-2: 3926, 264 solved)
 Kissat-sc2020-default (PAR-2: 4083, 260 solved)
 by Armin Biere

2. **Relaxed_LCMDCBDL_newTech** (PAR-2: 4179, 253 solved)
 by Xindi Zhang and Shaowei Cai

3. **Cryptominisat-ccnr-lsids** (PAR-2: 4267, 248 solved)
 Cryptominisat-ccnr (PAR-2: 4278, 250 solved)
 by Mate Soos, Shaowei Cai, Jo Devriendt, Stephan Gocht,
 Arijit Shaw, and Kuldeep Meel
More information and Acknowledgments

Additions Information

- The Competition Proceedings (solver and benchmark descriptions) will soon be available at https://satcompetition.github.io/2020/
- For the detailed competition results see the SAT Competition website

Acknowledgments

- Thanks to all the participants
- Thanks for all the benchmarks
- Thanks to Mike Whalen, Jonathan Eidelman, and Frankie Botero at AWS
- Thanks to Aaron Stump and StarExec
- Thanks to CAS Software Karlsruhe for the medals
- Thank You for Your attention