
CryptoMiniSat with CCAnr at the SAT
Competition 2020

Mate Soos (National University of Singapore)

Shaowei Cai (State Key Laboratory of Computer Science,

Institute of Software, Chinese Academy of Sciences)

Jo Devriendt (Lund University & University of Copenhagen)

Arijit Shaw, Kuldeep S. Meel (National University of Singapore)

I. Introduction

This paper presents the conflict-driven clause-learning
(CLDL) SAT solver CryptoMiniSat (CMS ) augmented with
the Stochastic Local Search (SLS) [4] solver CCAnr as
submitted to SAT Competition 2020.

CryptoMiniSat aims to be a modern, open source SAT
solver using inprocessing techniques, optimized data struc-
tures and finely-tuned timeouts to have good control over
both memory and time usage of inprocessing steps. It also
supports, when compiled as such, to recover XOR con-
straints and perform Gauss-Jordan elimination on them at
every decision level. For the competition, this option was
disabled. CryptoMiniSat is authored by Mate Soos.

CCAnr [4] is a stochastic local search (SLS) solver for
SAT, which is based on the configuration checking strategy
and has good performance on non-random SAT instances.
CCAnr switches between two modes: it flips a variable
according to the CCA (configuration checking with aspi-
ration) heuristic if any; otherwise, it flips a variable in
a random unsatisfied clause (which we refer to as the fo-
cused local search mode). The main novelty of CCAnr lies
on the greedy heuristic in the focused local search mode,
which contributes significantly to its good performance on
structured instances

II. Composing the Two Solvers

The two solvers are composed together in a way that
does not resemble portfolio solvers. The system runs the
CDCL solver CryptoMiniSat, along with its periodic inpro-
cessing, by default. However, at every 2nd inprocessing
step, CryptoMiniSat’s irredundant clauses are pushed into
CCAnr (in case the predicted memory use is not too high).
CCAnr is then allowed to run for a predefined number of
steps. This in total leads to about 1% of all solving time
dedicated to CCAnr. In case CCAnr finds a satisfying as-
signment, this is given back to the CDCL solver, which then
performs all the necessary extension to the solution (e.g.
for Bounded Variable Elimination, BVE [6]) and outputs
the final solution.

In case CCAnr does not find a satisfying assignment,
the following takes place. Firstly, the best variable setting
found by CCAnr as measured by the number of satisfied
clauses, is assigned as the polarity of the variables in the
CDCL SAT solver. This idea has been taken from the solver

CaDiCaL [3] as submitted to the 2019 SAT Race by Armin
Biere. Secondly, after every successful execution of CCAnr,
100 variables’ VSIDS are bumped in the following way.
CCAnr uses a clause weighting technique and clauses with
greater weight can be considered more difficult to satisfy.
Once CCAnr finishes, CCAnr’s clauses are sorted according
to their weights. Then, these clauses’ variables’ VSIDS
are bumped, from hardest-to-easiest clause order, until 100
variables’ VSIDS have been bumped. This shows clear
improvement in the combined solver’s performance. We
believe these two integrations point to potential tighter, as-
yet unexplored integration opportunities of the two solvers.

Note that the inclusion of the SLS solver is full in the
sense that assumptions-based solving, library-based solver
use, and all other uses of the SAT solver is fully supported
with SLS solving enabled. Hence, this is not some form of
portfolio where a simple shell script determines which solver
to run and then runs that solver. Instead, the SLS solver is
a full member of the solver, much like any other inprocessing
system, and works in tandem with it. For example, in case
an inprocessing step has reduced the number of variables
through BVE or increased it through BVA [9], the SLS
solver will then try to solve the problem thus modified. In
case the SLS solver finds a solution, the main solver will
then correctly manipulate it to fit the needs of the “outside
world”, i.e. the caller.

As the two solvers are well-coupled, the combination of
the two solvers can solve problems that neither system
can solve on its own. Hence, the system is more than just
a union of its parts which is not the case for traditional
portfolio solvers.

III. Gauss-Jordan Elimination

As per the upcoming paper [12], the Gauss-Jordan elimi-
nation of CryptoMiniSat has been significantly improved.
The average speed increase for moderately sized matrices
is approx 3-6x, allowing the system to be ran at all times
even when the matrix is not contributing as much to the
overall solving. Hence, for the first time in CryptoMiniSat’s
10 year history, Gauss-Jordan elimination is turned on by
default for the NoLimits track.

IV. Symmetry Breaking using BreakID and Bliss

The BreakID [5] system is a cost-effective symmetry
breaking preprocessor for SAT. Classic SAT symmetry pre-



processing [1] detects symmetry by converting the input for-
mula to a graph and computing generators for this graph’s
automorphism group, and adds symmetry breaking clauses
on a generator-by-generator basis. On top of this, BreakID
heuristically searches for structure in the automorphism
group, detecting row interchangeability symmetry (such as
in the pigeonhole problem) and computing binary symme-
try breaking clauses from orbits arising from the symmetry
group. The resulting symmetry breaking clauses are more
effective at reducing symmetrical assignments from the
search space, both from a theory point of view as well as
in practical experiments.

BreakID has been modified to work as a library. It can
receive the clauses on-the-fly from the SAT solver, and
produce the breaking clauses as a function return value.
Various small bugs have also be fixed, such as memory leaks,
which were not an issue when ran as a single executable,
but created isses when ran as a library. Furthermore, the
underlying highly sophisticated graph automorphism de-
tection system, Bliss [7], has been slightly improved to
allow for time-outs and it, too, has been fixed not to leak
memory. BreakID is fully integrated into CryptoMiniSat
by calling it on every 5th inprocessing iteration, and asked
to contribute breaking clauses. These are always added
with an assumption literal, so they can be removed when
the solving finishes. Hence, symmetry breaking also works
when CryptoMiniSat is used as a library.

V. Phase Selection using LSIDS

LSIDS is a literal activity-based phase selection heuris-
tic [10]. LSIDS activity is maintained for each literal, and
the activity for a literal is updated in a manner similar to
VSIDS. Phase selection is made based on LSIDS activity
only if the last backtrack is chronological. The LSIDS based
phase selection heuristic looks at the activity of both the
literals of a given variable and selects the literal with higher
activity.

VI. Further Improvements Relative to SAT Race
2019

Many of the inprocessing parameters have been tuned.
A few bugs related to clause activities have been fixed.
Clause distillation (or clause vivification) [8] is now used a
lot more, similarly to the previous years’ winning solvers.
The VSIDS and Maple decay factors are now iteratively
changed between 0.70 and 0.90 for Maple and 0.92 and 0.99
for VSIDS. Between each iteration there is an inprocessing
step, as before. This seems to add heterogeneity and avoids
having to tune these parameters to a “single best” value.
Polarity caching is still used, but once in a while, so-called
“stable” polarities are used, as per CaDiCaL [3] in the SAT
Race of 2019. Ternary resolution is also used at every
inprocessing step, thanks to the suggestion by Armin Biere.

VII. Thanks

Kuldeep S Meel, Arijit Shaw, and Mate Soos were sup-
ported in part by the National Research Foundation Singa-
pore under its NRF Fellowship Programme[NRF-NRFFAI1-

2019-0004 ] and AI Singapore Programme [AISG-RP-2018-
005], and NUS ODPRT Grant [R-252-000-685-13].

Shaowei Cai was supported by Beijing Academy of Artifi-
cial Intelligence (BAAI), and Youth Innovation Pro-motion
Association, Chinese Academy of Sciences [No. 2017150].

The computational work for this article was performed
on resources of the National Supercomputing Center, Sin-
gapore[2]. Mate Soos would also like to thank all the users
of CryptoMiniSat who have submitted over 600 issues and
pull requests to the GitHub CMS repository[11].

References

[1] Aloul, F.A., Sakallah, K.A., Markov, I.L.: Efficient symmetry
breaking for Boolean satisfiability. IEEE Trans. Comput. 55(5),
549–558 (May 2006), https://doi.org/10.1109/TC.2006.75

[2] ASTAR, NTU, NUS, SUTD: National Supercomputing Centre
(NSCC) Singapore (2018), https://www.nscc.sg/about-nscc/
overview/

[3] Biere, A.: CaDiCaL SAT solver GitHub page (2020), https:
//github.com/arminbiere/cadical

[4] Cai, S., Luo, C., Su, K.: Ccanr: A configuration checking based
local search solver for non-random satisfiability. In: Heule, M.,
Weaver, S.A. (eds.) SAT 2015. LNCS, vol. 9340. Springer (2015)

[5] Devriendt, J., Bogaerts, B., Bruynooghe, M., Denecker, M.:
Improved static symmetry breaking for SAT. In: Creignou, N.,
Le Berre, D. (eds.) Theory and Applications of Satisfiability Test-
ing – SAT 2016. pp. 104–122. Springer International Publishing,
Cham (2016), https://bitbucket.org/krr/breakid

[6] Eén, N., Biere, A.: Effective preprocessing in SAT through
variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.)
Theory and Applications of Satisfiability Testing. pp. 61–75.
Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

[7] Junttila, T.A., Kaski, P.: Engineering an efficient canonical
labeling tool for large and sparse graphs. In: ALENEX 2007.
SIAM (2007)

[8] Li, C., Xiao, F., Luo, M., Manyà, F., Lü, Z., Li, Y.: Clause
vivification by unit propagation in CDCL SAT solvers. Artif.
Intell. 279 (2020)

[9] Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding
of boolean formulas. In: Biere, A., Nahir, A., Vos, T. (eds.)
Hardware and Software: Verification and Testing. pp. 102–117.
Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

[10] Shaw, A., Meel, K.S.: Designing new phase selection heuristics.
In: SAT 2020 (2020)

[11] Soos, M.: CryptoMiniSat SAT solver GitHub page (2018), https:
//github.com/msoos/cryptominisat

[12] Soos, M., Gocht, S., Meel, K.S.: Accelerating approximate tech-
niques for counting and sampling models through refined CNF-
XOR solving. In: CAV 2020 (2020)

https://doi.org/10.1109/TC.2006.75
https://www.nscc.sg/about-nscc/overview/
https://www.nscc.sg/about-nscc/overview/
https://github.com/arminbiere/cadical
https://github.com/arminbiere/cadical
https://bitbucket.org/krr/breakid
https://github.com/msoos/cryptominisat
https://github.com/msoos/cryptominisat

	Introduction
	Composing the Two Solvers
	Gauss-Jordan Elimination
	Symmetry Breaking using BreakID and Bliss
	Phase Selection using LSIDS
	Further Improvements Relative to SAT Race 2019
	Thanks

