
Computing Preferred Extensions for Abstract
Argumentation

Xindi Zhang, Shaowei Cai*

1State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
2School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China

{zhangxd,caisw,chenzh}@ios.ac.cn

Abstract—In this document, we describe how to generate SAT
instances though a general SAT-based abstract argumentation
solver called MiniAF. We only focus on solving the reasoning
tasks of preferred semantic on the ICCMA benchmarks.

I. INTRODUCTION

SAT-based method is one of the most popular formal
argumentation approaches for solving reasoning tasks of the
abstract argumentation framework [1]. In this document, we
use a general solver called MiniAF [6] to solve tasks from
International Competition on Computational Models of Argu-
mentation(ICCMA). For clearer understanding, we repeating
the encoding method in this document.

II. BASIC CONCEPTS

A given abstract argumentation framework(AF) AF =
(A,R) can be represented by a directed graph, where A is
a set of arguments and R ⊆ A × A is the relation. For two
arguments a, b ∈ A, the relation aRb means that a attacks b
(which can be represented by a→ b as well), and we denote
a− = {b|bRa}. A set S ⊆ A defends an argument b ∈ A
if for all a with aRb there is c ∈ S with cRa. Semantic σ
represents a kind of property over a set of arguments, and a
σ-extension E ⊆ A is a argument set with the property σ.
There are definitions of some important semantic extensions.
• An extension E is conflict-free (cf) iif there are no

arguments a, b ∈ E with aRb;
• An extension E is admissible (adm) iif E is cf and E

defends every a ∈ E;
• An extension E is complete (co) iif E is adm and if E

defends a then a ∈ E;
• An extension E is preferred (prf) iif E is maximal co.
Given a semantic σ ∈ {co, prf} and an AF AF = (A,R),

an argument a ∈ A is skeptically accepted in AF if a is
contained in every σ-extensions, is credulously accepted in
AF if a is contained in some σ-extensions. There are some
tasks base on a given AF AF = (A,R) and an argument a.
• EE-σ: Enumerate all extensions E ⊆ A that are σ-

extensions;

This work was supported by Beijing Academy of Artificial Intelligence
(BAAI), and Youth Innovation Promotion Association, Chinese Academy of
Sciences [No. 2017150].

* Corresponding author

• SE-σ: Return an extension E ⊆ A that is a σ-extension;
• DC-σ: Decide if a is credulously accepted under σ;
• DS-σ: Decide if a is skeptically accepted under σ.

III. LABELLING ENCODING METHOD

This section introduces an equivalent way to define different
types of semantics by labelling encoding method [4], [6].
Given a set of arguments A, a labelling L mapping each
argument a ∈ A to {in, out, undec}, which means that a is
accepted, rejected or the status is undecided, respectively. The
set of all labellings for a given AF = (A,R) is denoted as
ζ(AF).
L ∈ ζ(AF) is called a complete labelling (co-L) iif for

any a ∈ A holds:
• L(a) = in⇔ ∀b ∈ a−, L(b) = out;
• L(a) = out⇔ ∃b ∈ a−, L(b) = in.
A co-L L ∈ ζ(AF) is equal to a prf -extension iif L

maximize the set of arguments labelled in.

IV. ENCODING FOR COMPLETE SEMANTICS

This section gives the classic encoding method for complete
semantics [2] used in MiniAF [6]. Given an AF AF = (A,R)
with |A| = k, and Φ : {1, ..., k} → A is an indexing bijection.

At first, we define three symbols Ii, Oi, Ui for each argu-
ment a ∈ AF with indexing i, and for each argument a ∈ AF ,
a can labelled exact one type label.∧
i∈{i,...,k}

((Ii∨Oi∨Ui)∧(¬Ii∨¬Oi)∧(¬Ii∨¬Ui)∧(¬Oi∨¬Ui))

(1)
By the definition, for each argument a ∈ AF without any

attackers, a should be labelled in.∧
{i|Φ(i)−=∅}

(Ii ∧Oi ∧ Ui) (2)

Then, for each argument a ∈ AF with at least one attacker:
L(a) = in ⇒ ∀b ∈ a−, L(b) = out; L(a) = in ⇐ ∀b ∈
a−, L(b) = out.∧

{i|Φ(i)− 6=∅}

(∧
{j|Φ(j)→Φ(i)}

¬Ii ∨Oj

)
(3)

∧
{i|Φ(i)− 6=∅}

(
Ii ∨

(∨
{j|Φ(j)→Φ(i)}

¬Oj

))
(4)

At last, for each argument a ∈ AF with at least one attacker:
L(a) = out ⇒ ∃b ∈ a−, L(b) = in; L(a) = out ⇐ ∃b ∈
a−, L(b) = in.∧

{i|Φ(i)− 6=∅}

(
¬Oi ∨

(∨
{j|Φ(j)→Φ(i)}

¬Ij
))

(5)

∧
{i|Φ(i)− 6=∅}

(∧
{j|Φ(j)→Φ(i)}

Ij ∨Oi

)
(6)

All the above formulas (1)-(6) make up a conjunctive
normal form (CNF) Π, which can be solved by a given SAT
solver. At last, to enumerate all extensions, MiniAF excluding
previous model s by add a formula ¬s to Pi after each time a
model is found by the SAT solver, until the SAT solver return
that there are no more model (UNSAT).

V. PREFERRED SEMANTICS AND RELATED TASKS

MiniAF uses an improved PrefSAT algorithm [3] for com-
puting preferred labellings (prf -L). The algorithm iterates
over a set of co-Ls to identify the preferred ones and optimizes
the process by set inclusion to maximise co-Ls.

To decide the credulous acceptance of an argument a, the
CNF Π is updated to Π∧IΦ−1(a). To check the skeptically ac-
ceptance of an argument a, MiniAF subsequently enumerates
all prf -Ls util it finds a labelling with L(a) 6= in.

VI. BENCHMARK SELECTION

We use MiniAF to solve the tasks of EE-prf , DS-
prf and DC-prf on the benchmarks from ICCMA-
17, ICCMA-19 which can be downloaded from
http://argumentationcompetition.org/. Following the definition
of ‘interesting instance’ that one should not be solved by
MiniSat [5] in a minute and should be solved by our own
solver within 1 hour, We select some interesting instances
from the intermediate results of MiniAF, which are in the
format of “.cnf”.

REFERENCES

[1] A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni. An abstract,
argumentation-theoretic approach to default reasoning. Artificial intelli-
gence, 93(1-2):63–101, 1997.

[2] F. Cerutti, P. E. Dunne, M. Giacomin, and M. Vallati. Computing
preferred extensions in abstract argumentation: A sat-based approach. In
International Workshop on Theorie and Applications of Formal Argumen-
tation, pages 176–193, 2013.

[3] F. Cerutti, M. Vallati, and M. Giacomin. An efficient java-based solver
for abstract argumentation frameworks: jargsemsat. International Journal
on Artificial Intelligence Tools, 26(02):1750002, 2017.

[4] G. Charwat, W. Dvořák, S. A. Gaggl, J. P. Wallner, and S. Woltran.
Methods for solving reasoning problems in abstract argumentation–a
survey. Artificial intelligence, 220:28–63, 2015.

[5] N. Eén and N. Sörensson. An extensible sat-solver. In International
conference on theory and applications of satisfiability testing, pages 502–
518, 2003.

[6] J. Klein and M. Thimm. Revisiting sat techniques for abstract argumenta-
tion. Computational Models of Argument: Proceedings of COMMA 2020,
326:251, 2020.

