Bipartite Perfect Matching Benchmarks

Cayden R. Codel, Joseph E. Reeves, Marijn J. H. Heule, and Randal E. Bryant
Carnegie Mellon University, Pittsburgh, United States

INTRO

The pigeonhole and mutilated chessboard problems are
challenging benchmarks for most SAT solvers not employing
special reasoning techniques. The solvers that do employ
special techniques can efficiently solve the canonical versions
of these two problems, but may fail with even slight problem
variations. To evaluate and improve the robustness of SAT
solvers, we designed a benchmark family of perfect matching
problems on bipartite graphs that generalizes the pigeonhole
and mutilated chessboard problems [1]. Our benchmark gen-
erator supports various encodings and randomized construc-
tions. These formulas are generally hard in the absence of
reasoning techniques resilient under randomness and encoding
variations.

BIPARTITE PROBLEM AND ENCODING

Random bipartite graphs are used to explore non-structured
problem instances of the perfect matching problem. The
density of a bipartite graph with node partitions of size n
and m is defined as the ratio of the number of edges to
the number of possible edges n x m. To generate a random
connected bipartite graph, edges are added randomly to a
random spanning tree until the desired density is reached.

Given a connected bipartite graph, a Boolean variable is
associated with each edge such that a satisfying assignment is
the edges in a perfect matching. The problem is encoded as
a CNF with at-least-one (ALO) constraints on nodes from the
larger partition and at-most-one (AMO) constraints on nodes
in the smaller partition. This is the Sparse problem encoding.
The Full problem encoding is derived by using both ALO and
AMO constraints for each node.

AMO constraints are encoded in three ways: Pairwise, Sinz,
and Linear,

Pairwise(z1, ..., x,,) is the pairwise set of binary clauses
with no auxiliary variables:

(T;VT;) withl1 <i<j<n
Sinz(z1, ..., z,) introduces signal variables that propagate

the AMO condition:

T;Vs; for 1 S) S n Ei\/si_H, gi\/fi—&-l

Linear(z1, ..., z,,) introduces variables to split up the Pair-
wise encoding when n > 4:

Pairwise(x1, o, 23,y) A AMO(Y, x4, .., Tp)

The Mixed AMO constraint option selects one of the three
AMO encodings at random for each node independently. Note
the signal s,, could be left out for the Sinz encoding of AMO,
and is in our implementation.

BOUNDED VARIABLE ELIMINATION ON PIGEONHOLE

Experimental findings [2] revealed a performance de-
cline for top-tier solvers when bounded variable elimination
(BVE) [3] was enabled on pigeonhole formulas. To explore
this phenomenon, we started with a pigeonhole formula using
the Sparse problem encoding and Pairwise AMO encoding,
then applied BVE to some set of variables and gave solvers
the new formula to solve. We found that specific variable
elimination orderings generated formulas that are difficult for
all solvers tested. Namely, eliminating n variables coming
from independent pigeons and independent holes. Notably, this
elimination ordering is forced in the Full problem encoding for
solvers that employ BVE.

BENCHMARKS

We submitted 21 benchmarks to the 2021 SAT Competition.
The first 17 formulas represent three configurations for random
bipartite problem generation: (1) Sparse with Pairwise AMO,
(2) Sparse with Mixed AMO (denoted by MIX in the naming),
and (3) Full (denoted by B in the naming) with Mixed AMO.
For each configuration we construct iteratively larger graphs
with partition sizes n from 15..20, with the exception of the
first configuration starting at n = 16. Each graph has edges
added until a density of 0.5 is reached which is generally hard
as seen in [1}

4 formulas are pigeonhole formulas with n from 11..14
and the Sparse with Pairwise AMO encoding. BVE is applied
to n variables for each (denoted by e# in the naming), with
eliminated variables selected from independent pigeons and
independent holes. This elimination order proves difficult for
previous competition winners shown in

All formulas are UNSAT.

REFERENCES

[1] C. Codel, J. Reeves, M. Heule, and R. Bryant, “Bipartite perfect matching
benchmarks,” in Proceedings of Pragmatics of (SAT), 2021.
[2] J. Reeves and M. Heule, “The impact of bounded variable elimination

for1<i<n on solving pigeonhole formulas,” in Proceedings of Pragmatics of (SAT),

2021.

[3] N. Eén and A. Biere, “Effective preprocessing in SAT through variable
and clause elimination,” in Theory and Applications of Satisfiability
Testing (SAT), ser. LNCS, vol. 3569. Springer, 2005, pp. 61-75.

I e r - —~ PAR-2

- —- timeout
Pairwise-Sparse

—a— Sinz-Sparse

—@— Linear-Sparse

| —s— Mixed-Sparse
Pairwise-Full

! —6— Sinz-Full

900 B A W e r Linear-Full

Mixed-Full

1500 |

1200

time(s)

600

300

| | I

PTLTEe T il |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
density

Fig. 1. Average execution time for KISSAT (2020 version) over randomly generated bipartite matching problems using a 900 second timeout and 1800
second PAR-2 score. For each density value, 60 random bipartite graphs are generated with a fixed edge count (130). Experiments cover the different AMO
and problem encodings described above. Problems are harder around the 0.5 density, and the Mixed AMO encodings are difficult for the respective Sparse
and Full encodings.

4000 — T T T T T T T T T T ‘ CADICAL
KISSAT
3500 - N —s— MAPLE17
—&— MAPLEILS
3000 + n MAPLE19
2500 |- |
=
) L |
§ 2000
1500 o |
1000 - ® |
500 — # /e/ﬂ___e/e\.‘/‘\ﬁ |
X ——y—— —4& | | | ! ! I

O 0EDpEF 1 2 3 4 5 6 7 8 9 10 1

Fig. 2. Execution time on BVE instances of pigeonhole formula n = 11. In each h instance (x-axis) 12 variables are eliminated, selected from independent
pigeons and A independent holes. NO-E is the solvers on pigeonhole n = 11 with BVE disabled, and DEF is the default configuration on the pigeonhole
formula. Solvers are previous SAT competition winners. h = 11 represents the independent pigeon/hole BVE instance used in the n = 11 benchmark, and
this variable elimination ordering is extended to n = 12,13, 14. It is the most difficult formula for the solvers, though some experience larger performance
degradation.

	References

