Sliding Tile Puzzles

Robert Clausecker and Benjamin Kaiser
Zuse Institute Berlin
Berlin, Germany
{clausecker,kaiser} @zib.de

P
I 31 8] 9 1| 2| 3
10| 6 4 41 5| 6| 7
2112 5115 81 9110 |11
141 711311 12|13 |14 | 15

Fig. 1. a permuted and a solved 15 puzzle

Abstract—We translate 5 x 5 sliding tile puzzle (24 puzzle)
instances into CNF formulz to compare the performance of SAT
solvers with standard heuristic search methods in this domain.
We find that SAT solvers still have a long way to go before they
might be competitive in this problem domain.

I. INTRODUCTION

Sliding tile puzzles comprise an n X m rectangular tray
holding square tiles numbered 1 to (nm — 1) with one spot
empty. The objective is to permute the tiles such that their are
arranged in order. To get there, the state of the puzzle can be
changed by shifting tiles adjacent to the blank spot into the
blank spot.

In the domain of heuristic search, sliding tile puzzles are
frequently used as NP-hard model problems for graph search
methods. They are particularly useful due to their simple and
regular structure and admit use of many advanced search
techniques.

With this submission, we would like to understand how
well SAT methods might be suitable for solving this problem.
While SAT solvers lack dowmain specific heuristics, they are
able to attack the problem in ways that aren’t really accessible
to tree-search methods, e.g. by drawing conclusions from parts
of the puzzle configuration that can be reused in other parts.

II. ENCODING

The basic decision problem is: can a given configuration
of the (n x n — 1) puzzle be transitioned into the solved
configuration within £ moves? This decision problem is en-
coded into a SAT instance by creating k + 1 sets of variables,
each representing one puzzle configuration. Clauses are added
encoding that adjacent configurations must be related by

performing a single move. Furthermore, the first configuration
must be equal to the problem configuration and there must
exist a configuration equal to the solved configuration.

Each configuration is represented as an array of nxn vectors
of literals where each vector t; ; represents the number of the
tile at grid location (4, j). The grid is rotated horizontally and
vertically such that the blank spot (numbered 0) is always in
the top left corner. Two vectors of bits & and v encode in one-
hot encoding where the top left tile ends up after the grid is
rotated.

The move relation is encoded using two literals mg and m;
encoding if the move taken was up, down, left, or right. By
checking the polarity of these literals in the model found by
the solver, the solution to the puzzle can be extracted.

Using these literals, we then check if the tiles on the board
moved according to the move taken. We also check i and v
to ensure that moves across the border do not occur.

III. SUBMITTED BENCHMARKS

As a sample instance, we picked problem 50 of Korf’s
instances of the 24 puzzle [1]. As the full problem with its
113 step solution is too difficult to be solved by current SAT
solvers, we simplified it by tracing the solution of the problem
and taking the puzzle configurations obtained with distances
k = 30...60 to the solved configuration. With rising k, the
configurations become progressively harder to solve.

For each such k, two SAT instances were generated. One
instance has a move budget of k and is satisfiable. The other
instance has a move budget of £ — 2 and is unsatisfiable. This
way, both the capability to solve SAT and UNSAT instances
is exercised using the same type of instance.

ACKNOWLEDGMENT

We want to express our gratitude towards the organisers of
the SAT Competition 2021 for making such an event possible.
Additionally we like to thank Florian Schintke for his support
and the IT and Data Services members of the Zuse Institute
Berlin for providing the infrastructure.

REFERENCES

[1] Richard E. Korf and Ariel Felner, “Disjoint Pattern Database Heuristics”,
Artificial Intelligence 134(1-2), p. 9-22, 2020.

	Introduction
	Encoding
	Submitted Benchmarks
	References

