
Minimal Superpermutation SAT Benchmarks
Martin Mariusz Lester

Department of Computer Science
University of Reading

Reading, United Kingdom
m.lester@reading.ac.uk
0000-0002-2323-1771

Abstract—This benchmark consists of several SAT-based en-
codings of instances of the minimal superpermutation problem.

I. INTRODUCTION

The minimal superpermutation problem [1] asks, for a pos-
itive integer n, what is the smallest sequence of the digits 1–n
that contains every permutation of [1, n] as a subsequence?

For example, for n = 4, the minimal superpermutation has
length l = 33. If the first permutation in the sequence is fixed
to be 1234, then it is uniquely determined to be:

123412314231243121342132413214321

For n = 5, l = 153, but the sequence is not unique [2]. For
higher values of n, the length of the minimal superpermutation
is not known. For example, for n = 6, 861 ≤ l ≤ 872.

An instance of the superpermutation problem can be el-
egantly encoded as an instance of the Travelling Salesman
Problem (TSP). The best known automated methods for solv-
ing instances of the superpermutation problem use dedicated
TSP solvers. This method was used to verify minimality for
n = 5 and find the smallest known sequence for n = 6 [3].
As the TSP is NP-complete, instances can be translated into
SAT instances, but the resulting SAT instances are often hard
for current solvers.

The instances in this benchmark suite instead use direct
encodings of the superpermutation problem into SAT. The
instances encode the decision problem of whether a super-
permutation (or a prefix of a superpermutation) of length l for
n distinct digits exists, rather than the optimisation problem
of finding the smallest l for a particular n.

II. ENCODINGS

The instances directly encode a sequence of l digits drawn
from [1, n] and a combinatorial circuit to recognise whether
the sequence is a superpermutation.

The 1st layer of the circuit recognises individual permuta-
tions. Each permutation consists of n! digits; a permutation
recognising circuit checks whether the values of the digits
match those expected for a particular permutation. A permu-
tation could start at any of the l digits, except those at the
end of the sequence, so roughly l copies of each permutation
circuit are needed.

In the 2nd layer of the circuit, for each permutation, the
outputs of each copy of the permutation recognising circuit

are ORed together. The 3rd layer of the circuit ANDs together
the outputs of the 2nd layer, evaluating to true only if all
permutations exist in the sequence.

Different instances in the benchmark use different encodings
of the digits and the circuit. There are 3 different encodings
of the digits:

1) Binary encoding, using log n bits per digit.
2) One-hot encoding, using n bits per digit, with k encoded

as bit k set to 1 and all other bits to 0.
3) Unary encoding, using n bits per digit, with k encoded

using the k least significant bits set to 1 and all remain-
ing bits set to 0.

For each encoding digit encoding, there are 2 variants:
1) A non-strict encoding, where a digit’s bits are con-

strained only by the permutation recognising circuit.
2) A strict encoding, where extra clauses constrain a digit’s

bits only to valid encodings of a digit; this sometimes
allow a smaller encoding of the permutation recognising
circuit.

The 1st layer of the circuit has 2 variants:
1) Flat: The permutation recognising circuit is a large AND

over equality of all digits.
2) Tree: The permutation recognising circuit is built from

a tree of permutation prefix recognising circuits. Where
two permutations share a common prefix, they share
circuitry to recognise that prefix.

In total, this amounts to 3 · 2 · 2 = 12 different encodings.

III. INSTANCES

The benchmark suite contains instances of 3 slightly differ-
ent problems:

1) Find the minimal superpermutation for n = 4 with
l = 33. These instances are easy, with MiniSAT 2.2.1
solving them in less than 1 minute.

2) Show that the minimal superpermutation for n = 4
with l = 33 is unique, once the first permutation is
fixed. These instances add a clause to instances from the
preceding set that forbids the known superpermutation,
making them unsatisfiable. These instances are still
relatively easy, with MiniSAT solving the hardest in just
over 2 minutes.

3) Find a prefix of a superpermutation for n = 5 with either
l = 21 and g = 15 permutations, or l = 26 and g = 19



permutations. These instances are harder, with MiniSAT
solving 7 out of the 12 l = 21 instances in under 10
minutes and none of the l = 26 instances.

In the final set of instances, the check for g permutations
was encoded by converting the SAT instance to a Pseudo-
boolean (PB) instance, where it could easily be added as
a cardinality constraint. Then the cardinality constraint was
converted back to SAT using pbencoder from pblib [4].

The values of l for the final set of instances were chosen to
be hard but plausible within the 5000 second time limit used
in the SAT Competition. With the PB formulation, the default
configuration of the PB solver clasp [5] was able to solve 8
out of 12 of the l = 26 instances within this time limit.

All timings are for an Intel i5-7500 CPU running at
3.40GHz.

REFERENCES

[1] D. A. Ashlock and J. Tillotson, “Construction of small superpermutations
and minimal injective superstrings,” in Conference on Algebraic Aspects
of Combinatorics and Sundance Conference and International Conference
on Algol 68 Implementation, ser. Congressus Numerantium, no. v. 93.
Utilitas Mathematica Pub. Incorporated, 1993, pp. 91––98. [Online].
Available: https://books.google.co.uk/books?id=f5PgAAAAMAAJ

[2] N. Johnston, “Non-uniqueness of minimal superpermutations,” Discret.
Math., vol. 313, no. 14, pp. 1553–1557, 2013. [Online]. Available:
https://doi.org/10.1016/j.disc.2013.03.024

[3] R. Houston, “Tackling the minimal superpermutation prob-
lem,” CoRR, vol. abs/1408.5108, 2014. [Online]. Available:
http://arxiv.org/abs/1408.5108

[4] T. Philipp and P. Steinke, “Pblib – a library for encoding pseudo-boolean
constraints into cnf,” in Theory and Applications of Satisfiability Testing
– SAT 2015, ser. Lecture Notes in Computer Science, M. Heule and
S. Weaver, Eds. Springer International Publishing, 2015, vol. 9340, pp.
9–16.

[5] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, “clasp :
A conflict-driven answer set solver,” in Logic Programming and
Nonmonotonic Reasoning, 9th International Conference, LPNMR 2007,
Tempe, AZ, USA, May 15-17, 2007, Proceedings, ser. Lecture Notes
in Computer Science, C. Baral, G. Brewka, and J. S. Schlipf,
Eds., vol. 4483. Springer, 2007, pp. 260–265. [Online]. Available:
https://doi.org/10.1007/978-3-540-72200-7 23


