
Verifying Optimums of (Partial) Max-SAT Formulas
Mohamed Sami Cherif, Djamal Habet and Cyril Terrioux

Aix-Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France
{mohamed-sami.cherif, djamal.habet, cyril.terrioux}@univ-amu.fr

Abstract—Checking whether a certain bound holds over a set
of relaxation variables is a subproblem which often arises in
the context of Maximum Satisfiability (Max-SAT) solving and
particularly SAT-based solving. This document describes a col-
lection of SAT instances that have been submitted to the 2021 SAT
competition. These instances are derived from Max-SAT formulas
whose soft clauses are augmented with relaxation variables. An
At-Most-K constraint is then set over these variables to check
the validity of a provided bound. We use this process to verify
known solutions of (Partial) Max-SAT formulas.

Index Terms—SAT, Max-SAT, At-Most-K constraint

I. INTRODUCTION

The maximum satisfiability (Max-SAT) problem is an opti-
mization extension of the satisfiability (SAT) problem. For a
given formula in Conjunctive Normal Form (CNF), it consists
in finding an assignment of the variables which maximizes the
number of satisfied clauses. In Partial Max-SAT, clauses are
divided into hard and soft clauses and the goal is to find an
assignment that satisfies all hard clauses and maximizes the
number of satisfied soft clauses. In recent years, Max-SAT
solvers have achieved great breakthroughs by relying on SAT
technology. In fact, Complete methods for this problem in-
clude SAT based approaches which iteratively call SAT solvers
making them particularly efficient on industrial instances [5].

Checking whether a certain bound holds over a set of
relaxation variables is a subproblem which often arises in
the context of Maximum Max-SAT solving and particularly
in SAT-based solving. For instance, Linear Search algorithms
[2], [3] augment soft clauses with relaxation variables and add
a CNF encoding over their sum to specify that the number of
falsified soft clauses must be less than a given bound. A SAT
solver is then iteratively called and the bound is increased
(resp. decreased) until the formula becomes satisfiable (resp.
unsatisfiable). Similarly to these algorithms, we rely on the
fact that the optimum of a Max-SAT formula is the threshold
in which the formula becomes satisfiable to verify the validity
of a given optimum. To this end, given a Max-SAT formula
and an integer value, we encode two SAT instances to check
whether the given value is the threshold, i.e. the optimum of
the formula.

II. VERIFYING (PARTIAL) MAX-SAT OPTIMUMS

Let φ = H ∪ S be a Partial Max-Sat formula where H
denotes the set of hard clauses and S = {c1, ..., cm} the set of
soft clauses. Let k be an integer value. We define the following
formula:

φk = H ∪ {ci ∪ {ri}|ci ∈ S} ∪ CNF (
∑

1≤i≤m

ri ≤ k)

where r1, .., rm are new relaxation variables.
To verify that a given value o is the optimum of a CNF

formula φ, it is sufficient to check that this value is the
threshold in which the formula becomes satisfiable. To this
end, we need to encode the formulas φo−1 and φo and verify
that φo−1 is unsatisfiable and φo is satisfiable.

III. THE SUBMITTED BENCHMARK

We consider the Single machine scheduling family in the
2020 Max-SAT Evaluation described in [4]. We picked the 18
instances which were solved (by at least one solver) in the
2020 Max-SAT Evaluation and thus for which the optimum is
known. For each instance φ, we encoded the formulas φo−1

and φo. The submitted benchmark thus comprises 36 instances
in total with 18 satisfiable instances and 18 unsatisfiable ones.
We maintain the same naming conventions used in [4] except
that we add ’ sat’ or ’ unsat’ to each formula indicating
respectiviely whether it is satisfiable or unsatisfiable. We
used the PySAT library [1] to add the cardinality constraints
(i.e. At-Most-K constraints) over the relaxation variables. The
encoding chosen for these constraints is the sequential counter
encoding [6]. Finally, it is important to note that, once the
constraints added, the clauses in the resulting formulas are
shuffled.

REFERENCES

[1] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. PySAT: A
Python toolkit for prototyping with SAT oracles. In SAT, pages 428–437,
2018.

[2] Miyuki Koshimura, Tong Zhang, Hiroshi Fujita, and Ryuzo Hasegawa.
Qmaxsat: A partial max-sat solver system description. Journal on
Satisfiability, Boolean Modeling and Computation, 8, 01 2012.

[3] Daniel Le Berre and Anne Parrain. The sat4j library, release 2.2, system
description. Journal on Satisfiability Boolean Modeling and Computation,
7:59–64, 07 2010.

[4] Xiaojuan Liao and Miyuki Koshimura. Description of Benchmarks
on Single-Machine Scheduling. In Fahiem Bacchus, Jeremias Berg,
Matti Järvisalo, and Rubens Martins, editors, MaxSAT Evaluation 2020:
Solver and Benchmark Descriptions, Department of Computer Science
Report Series B 2020-2, page 54. University of Helsinki, Department of
Computer Science, 2020.

[5] Antonio Morgado, Federico Heras, Mark Liffiton, Jordi Planes, and Joao
Marques-Silva. Iterative and core-guided MaxSAT solving: A survey and
assessment. Constraints, 18, 10 2013.

[6] Carsten Sinz. Towards an Optimal CNF Encoding of Boolean Cardinality
Constraints. In Peter van Beek, editor, Principles and Practice of
Constraint Programming - CP 2005, pages 827–831, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.


