
Safe Population Growth with Rule 30
Md Solimul Chowdhury, Martin Müller, Jia-Huai You

Department of Computing Science, University of Alberta
Edmonton, Alberta, Canada.

{mdsolimu, mmueller, jyou}@ualberta.ca

Abstract—A population is an one-dimensional grid of n ≥ 1
organisms, where each organism evolves between being alive (1)
and dead (0) across chronological time steps by following a fixed
rule of evolution. At any time step t ≥ 1, the combined states
of n organisms represent the state of the population at t. At t,
a population is under the threat of extinction, if the number of
alive organisms falls below n ∗ (P/100), where 0 < P ≤ 100
and safe, otherwise. We say that a population grows over T time
steps, if for any time step t < T − 1, population at t′ has more
alive organisms than population at t, with t′ = t+ 1.

In our proposed SAT benchmark Safe Population Growth
(SPG), given a population of n organisms, a maximum time step
T , we verify if a population could safely grow upto time step T ,
while following a fixed rule of evolution. For the SAT competition
2021, we have submitted 20 instances of the SPG benchmark.

I. SPG AS A CELLULAR AUTOMATON

State evolution in the Safe Population Growth (SPG) prob-
lem represents the state evolution of cells in finite elementary
cellular automaton (CA) [2], with respect to (i) the safety
constraint at any given time step and (ii) the growth constraint
between any two consecutive time steps.

In an elementary CA, at time step t+ 1, the state of a cell
c, which has cell l (resp. r) as its left (resp. right) neighbour,
is computed based on a boolean combination the states of c,
l,and r at time t. There are 23 = 8 combinations of boolean
values for l, c, and r at t, for each of which, there are 2 ways
to set the value of the state of c at t + 1. Hence, there are
28 = 256 ways to set the new state of the c at t + 1. Each
of these 256 ways are called rules [2] for a given elementary
CA.

We consider Rule 30 [3] for the SPG problem, which is
known to produce chaotic patterns over time. At time t + 1,
for a given center cell (center), its left (left) and right (right)
neighbours, Rule 30 computes the state centert+1 of the
center cell as follows:

centert+1 ← leftt XOR (centert OR rightt)

.

Fig. 1: State evolution for the center cell for Rule 30; black
cells represents alive (1) cells, white cells represents dead (0)
state.

Figure 1 (taken from [3]) shows the evolution scheme for
Rule 30, which is known to exhibit chaotic behavior for some
initial states. Figure 2 shows such a chaotic evolution of a CA
that follows Rule 30 (also taken from [3]).

Fig. 2: Emergence of chaotic behavior with Rule 30

II. SAT ENCODING OF THE SPG PROBLEM

A. SPG as a SAT Benchmark

Given a population of n ≥ 1 organisms, a maximum time
step T ≥ 2, , and a safety threshold 0 < P ≤ 100, the task
of the SPG problem is to determine if the population evolve
upto T by following Rule 30, with respect to the following
two constraints:
safety: Total number of alive organisms in every time step
1 ≤ t ≤ T is at least n ∗ (P/100).
growth: For any two consecutive time steps t and t′, where
t′ = t+ 1, number of alive cells at t′ is greater or equals to
the number of alive cells at t.

We can encode an instance of the SPG problem as a SAT
instance. Let sti be the state of the current cell i, where 1 ≤
t ≤ T and 1 ≤ i ≤ n. Given a SPG problem, we encode it as
a SAT formula FSPG as follows

FSPG = Fevolution ∪ Fsafety ∪ Fgrowth ∪ Fboundary

, where, Fevolution, Fsafety, Fgrowth, and Fboundary are de-
fined as follows:

Fevolution :

T∧
t=1

n∧
i=1

(st+1
i = (sti−1 ⊕ (sti ∨ sti+1)))

Fsafety :

T∧
t=1

n∑
i=1

sti ≥ n ∗ (P/100)

Fgrowth :

T−1∧
t=1

n∑
i=1

st+1
i ≥

n∑
i=1

sti



Fboundary :

T∧
t=1

¬st0 ∧ ¬stn+1

Over T time steps,
• Fevolution encodes the evolution of the population of n

organisms that follows Rule 30.
• Fsafety encodes the population safety constraint.
• Fgrowth encodes the population growth constraint.
• Fboundary encodes the assertion that left neighbor (resp.

right neighbor) of the leftmost (resp. rightmost) organism
(resides outside of the boundary of a given population)
of the population is always dead (0).

FSPG is SATISFIABLE, if the population can evolve upto
time step T with respect to the safety and growth constraint,
otherwise, it is UNSATISFIABLE.

III. PROBLEM MODELING AND INSTANCE GENERATION
FOR THE SPG BENCHMARKS

A. Problem Modeling

picat [1] is a CSP solver, which accepts a CSP problem
and converts it to a SAT CNF formula, which is inturn solved
by a SAT solver hosted by picat. Before solving the converted
CNF formula, picat outputs the CNF formula.

To generate instances for the SPG benchmark, we use this
CNF generation feature of picat. First, we modelled the SPG
problem in a picat program picatSPG. Then, for a given set
of parameter values for (T, n, P ), we use this picatSPG model
to generate CNF FSPG by exploiting the CNF generation
functionality of picat.

B. Instance Generation

We have generated a set of FSPG instances with the
picatSPG by varying the parameters T and n, while setting
P to a fixed value of 70. From this set of instances, we have
submitted 20 instances for SAT competition-2021 (CNF file
names with prefix spg), 10 of which are interesting1.

REFERENCES

[1] Picat, http://picat-lang.org/resources.html, Accessed: 2020-04-09
[2] Stephen Wolfram, A new kind of science. Wolfram-Media 2002, ISBN

978-1-57955-008-0, pp. I-XIV, 1-1197.
[3] Rule 30 , https://mathworld.wolfram.com/Rule30.html, Accessed: 2020-

04-09

1Not too easy (solvable by MiniSat in a minute) or too hard (unsolvable
by the participants own solver within one hour on a computer similar to the
nodes of the StarExec cluster)

2


