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Abstract—This document describes the Kissat MAB solver
which is based on the solver Kissat, winner of 2020 SAT
competition. We augmented Kissat with a Multi-Armed Bandit
(MAB) framework which combines the Variable State Indepen-
dent Decaying Sum (VSIDS) and the Conflict-History Based
(CHB) branching heuristics by adaptively choosing a relevant
heuristic at each restart using the Upper Confidence Bound
(UCB) strategy.
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I. INTRODUCTION

Conflict Driven Clause Learning (CDCL) [8] solvers are
known to be efficient on structured instances and manage
to solve ones with a large number of variables and clauses.
An important component in such solvers is the branching
heuristic which picks the next variable to branch on. The
Variable State Independent Decaying Sum (VSIDS) [9] has
been the dominant heuristic since its introduction two decades
ago. Recently, Liang and al. devised a new heuristic for SAT,
called Conflict History-Based (CHB) branching heuristic [6],
and showed that it is competitive with VSIDS. In the last years,
VSIDS and CHB have dominated the heuristics landscape
as practically all the CDCL solvers presented in recent SAT
competitions and races incorporate a variant of one of them.

Recent research has shown the interest of machine learning
in designing efficient search heuristics for SAT [5]-[7] as
well as for other decision problems [4], [10]-[12]. One of the
main challenges is defining a heuristic which can have high
performance on any considered instance. Indeed, a heuristic
can perform very well on a family of instances while failing
drastically on another. To this end, we use reinforcement
learning under the Multi-Armed Bandit (MAB) framework to
pick an adequate heuristic among CHB and VSIDS for each
instance. The MAB takes advantage of the restart mechanism
in modern CDCL algorithms to evaluate each heuristic and
choose the best one accordingly. The MAB uses the Upper
Confidence Bounds (UCB) [1] strategy to select an arm at
each restart.

II. COMBINING VSIDS AND CHB THROUGH MAB

Let A = {VSIDS,CHB} be the set of arms for the
MAB containing different candidate heuristics. The proposed
framework selects a heuristic a € A at each restart of the
backtracking algorithm according to the Upper Confidence
Bound (UCB) [1] policy. To choose an arm, UCB relies on
a reward function calculated during each run to estimate the

performance of the chosen branching heuristic. We choose a
reward function that estimates the ability of a heuristic to reach
conflicts quickly and efficiently. If ¢ denotes the current run,
the reward of arm a € A is calculated as follows:

ry(a) = logs(decisionsy)
g " decidedVars;

decisions; and decidedV ars; respectively denote the number
of decisions and the number of decision variables, i.e. variables
which were branched on at least once, in the run ¢. This
reward function is adapted from the explored sub-tree measure
introduced in [10].

The UCBI algorithm [1] is used to select the next branching
heuristic within the set of candidate heuristics A. The follow-
ing parameters are maintained for each candidate arm a € A:

o n¢(a) is the number of times the arm « is selected during

the ¢ runs,

o 7¢(a) is the empirical mean of the rewards of arm a over

the ¢ runs.
UCBI1 thus selects the arm a € A that maximizes UCB(a)
which is defined as follows :

UCB(a) =T7(a) + c.

The left-side term of UCB(a) aims to put emphasis on
arms that received the highest rewards. Conversely, the right-
side term ensures the exploration of underused arms. The
parameter ¢ can help to appropriately balance the interchange
between the exploitation and exploration phases in the MAB
framework.

III. IMPLEMENTATION

We implement this idea in Kissat [3] which won first place
in the main track of the SAT Competition 2020. Note that
this solver is a condensed and improved reimplementation
of the reference and competitive solver CaDiCaL [2], [3] in
C. We maintain the VSIDS variant already implemented in
Kissat which is similar to Chaff’s where all analyzed variables
are bumped after every conflict [9]. We also augment the
solver with the heuristic CHB as specified in [6] except that
we update the scores of the variables in the last decision
level after unit propagation. In addition, we set the parameter
c to 2. The rewards in UCB are initialized by launching
each heuristic once during the first restarts. It is important
to note that the only modified components of the solver are



the decision component and the restart component, i.e. all the
other components as well as the default parameters of the
solver are left untouched.
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