
Maple MBDR Cent PERM and
Maple MDBR BJL in the 2021 SAT Solver

Competition
Sima Jamali

Simon Fraser University
Vancouver, Canada

sja88@sfu.ca

David Mitchell
Simon Fraser University

Vancouver, Canada
mitchell@cs.sfu.ca

Abstract—We give a brief description of our solvers
Maple MBDR Cent PERM and Maple MBDR BJL.
Maple MBDR Cent PERM stores high-centrality learned
clauses permanently. Maple MBDR BJL, uses a simple and
cheap scheme to learn additional small clauses. Both solvers
are based on Relaxed Maple LCMDCBDL newtech, the second
place solver from the main track of the 2020 SAT Solver
Competition.

Index Terms—High-Centrality Clauses, Permanent, Learning

I. INTRODUCTION

Relaxed Maple LCMDCBDL newtech won the silver
medal of the main track of the 2020 SAT Solver Competition
[3]. This is a recent member of the MapleSAT family of
solvers that has been improved over the last 5 years [1], [2],
[4], [6], [8], [9]. Our submissions modify the clause main-
tenance strategy of Relaxed Maple LCMDCBDL newtech,
which was inherited from COMiniSatPS and involves three
stores of learnt clauses: Core, Tier2 and Local [5], [6]. Learned
clauses are placed in one of these stores based on their
LBD. Small LBD clauses are placed in Core and retained
permanently.

Clause Centrality was introduced in [10] and shown to be
a useful clause quality measure. Maple MBDR Cent PERM
places high-centrality clauses in Core regardless of their LBD.
Small clauses are understood to be valuable, and many solvers
store very small clauses permanently. Maple MBDR BJL has
a simple scheme to learn an additional small clause after each
backjump to a small decision level.

II. HIGH-CENTRALITY PERMANENT CLAUSES

The centrality of a clause is the mean betweenness centrality
of its variables. To compute centralities, we generate the
primal graph of the input CNF (after pre-processing). The
betweenness centrality of a vertex (variable) v is the number
of shortest paths between pairs of vertices excluding v, that
visit v. It is defined by g(v) =

∑
s 6=v 6=t(σs,t(v)/σs,t), where

σs,t is the number of shortest s-t paths and σs,t(v) is the
number of those passing through v, normalized to [0, 1] [11].

This work was supported by the Natural Sciences and Engineering Council
of Canada (NSERC) through a Discovery Grant to the second author.

We use Brandes algorithm [12] to compute centrality values.
Generating the graph and computing centrality values are
memory and time intensive for large formulas, so we compute
centralities only for formulas with at most 100,000 clauses
after pre-processing. We also limit the time for centrality
computation to 150 seconds. We use the base solver without
modification for formulas without centralities. For formulas
with centralities, high centrality (HC) learned clauses (those
with centrality greater than a threshold CT ), are stored in
Core, regardless of their LBD. We aim to include at least
the 0.02% of learned clauses with highest centrality in Core.
We set an initial threshold of CT ≥ 0.008. Every 100, 000
conflicts, if the number of HC clauses in Core is less than
0.02% of all learned clauses, CT is reduced by 0.001, but it
is never reduced below 0.004. We submitted two versions:
• Maple MBDR Cent PERM 10K: This solver adds at

most the first 10,000 HC clauses to Core.
• Maple MBDR Cent PERM 75K: This solver adds at

most the first 75,000K HC clauses to Core.

III. BACKJUMP LEARNING

Standard conflict analysis schemes derive one clause, called
the 1-UIP clause, at each conflict. To Maple MBDR BJL, we
add a simple and inexpensive scheme to learn additional small
clauses.
BackJump Learning Scheme (BJL): Assume a conflict
at level x, meaning after assigning x literals l1, l2, .., lx to
true, a conflict is reached. After conflict analysis the solver
backjumps to a level b and learns a 1UIP clause C =
{m1,m2, ...,mi−1,mi}. Only one literal mi from C belongs
to level x, and b < x, so after the first b decisions, if we had
C in the clause database, unit propagation would prevent this
conflict by assigning mi true. Therefore, we can also learn
clause C2 = {¬l1,¬l2, ...¬lb,mi}. For small values of b, this
new learned clauses is small.
We submitted two versions:
• Maple MBDR BJL6 Local: This solver uses the BJL

learning scheme described above and sets b = 6. The
new learned clauses are stored in Local regardless of their
LBD value.



• Maple MBDR BJL7 Tier2: This solver uses the BJL
learning scheme described above and sets b = 7. The
new learned clauses are stored in tier2 regardless of their
LBD value.

REFERENCES

[1] A. Nadel and R. Vadim, “Chronological Backtracking,” in Proceedings
of SAT, 2018, pp. 111–121.

[2] A. Nadel and R. Vadim, “Maple LCM Dist ChronoBT: Featuring
Chronological Backtracking,” in Proceedings SAT Competition 2018 -
Solver and Benchmark Descriptions, 2018, pp. 29.

[3] SAT Competition 2020, https://satcompetition.github.io/2020/
[4] C. Oh, “Between SAT and UNSAT: The Fundamental Difference in

CDCL SAT,” in Proceedings of SAT, 2015, pp. 307–323.
[5] C. Oh, “Improving SAT solvers by exploiting empirical characteristics

of CDCL”, Ph.D. dissertation, New York University, 2016.
[6] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, “Learning rate

based branching heuristic for SAT solvers,” in Proceedings of SAT, 2016,
pp. 123–140.

[7] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in Proceedings of IJCAI, 2009, pp. 399–404.

[8] M. Luo, C.-M. Li, F. Xiao, F. Manya, and Z. Lu, “An effective learnt
clause minimization approach for CDCL SAT solvers,” in Proceedings
of IJCAI, 2017, pp. 703–711.

[9] X. Zhang and Sh. Cai, “Relaxed Backtracking with Rephasing,” in
Proceedings of SAT Competition 2020 - Solver and Benchmark De-
scriptions, 2020, pp. 15-16.

[10] S. Jamali and D. Mitchell, “Centrality-based improvements to CDCL
heuristics Authors,” in Proceedings of SAT, 2018, pp. 122-131.

[11] L. Freeman, “A set of measures of centrality based on betweenness,” in
Journal of Sociometry, volume 40(1), 1977, pp. 35-41.

[12] U. Brandes, “A faster algorithm for betweenness centrality,” in Journal
of Mathematical Sociometry, volume 25(2), 2001, pp. 163–177.


