
Four CDCL solvers based on expLRB, expVSIDS
and Glue Bumping

Md Solimul Chowdhury
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada

mdsolimu@ualberta.ca

Martin Müller
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada

mmueller@ualberta.ca

Jia-Huai You
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada

jyou@ualberta.ca

Abstract—This document describes 4 CDCL SAT
solvers: kissat gb, kissat crvr gb, cms expV gbL and
CaDiCaL hack gb which are entering the SAT Competition-
2021. These solvers are based on three new ideas: 1) Guidance
of Learning Rate Based (LRB) and Variable State Independent
Decaying Sum (VSIDS) branching heuristics via random
exploration amid pathological phases of conflict depression
2) Activity score bumping of variables which appear in the
glue clauses, and 3) Common Reason decision Variable score
Reduction (CRVR).

I. GUIDANCE OF CDCL BRANCHING HEURISTICS VIA
RANDOM EXPLORATION DURING CONFLICT DEPRESSION

This approach is based on our observation that CDCL SAT
solving entails clear non-random patterns of bursts of conflicts
followed by longer phases of conflict depression (CD) [1].
During a CD phase a CDCL SAT solver is unable to generate
conflicts for a consecutive number of decisions. To correct
the course of such a search, we propose to use exploration to
combat conflict depression. We therefore design a new SAT
solver, called expSAT, which uses random walks in the context
of CDCL SAT solving. In a conflict depression phase, random
walks help identify more promising variables for branching.
As a contrast, while exploration explores future search states,
LRB and VSIDS relies on conflicts generated from the past
search states.

A. expSAT algorithm

Given a CNF SAT formula F , let vars(F), uV ars(F)
and assign(F) denote the set of variables in F , the set of
currently unassigned variables in F and the current partial
assignment, respectively. In addition to F , expSAT also accepts
four exploration parameters nW, lW, pexp and ω, where 1 ≤
nW, lW ≤ uV ars(F), 0 < pexp, ω ≤ 1. These parameters
control the exploration aspects of expSAT . The details of these
parameters are given below.

Given a CDCL SAT solver, expSAT modifies it as follows:
(I) Before each branching decision, if a substantially large
CD phase is detected then with probability pexp, expSAT
performs an exploration episode, consisting of a fixed number
nW of random walks. Each walk consists of a limited number
of random steps. Each such step consists of (a) the uniform
random selection of a currently unassigned step variable and
assigning a boolean value to it using a standard CDCL polarity

heuristic, and (b) a followed by Unit Propagation (UP). A walk
terminates either when a conflict occurs during UP, or after a
fixed number lW of random steps have been taken. Figure 1
illustrates an exploration episode amid a CD phase. (II) In an
exploration episode of nW walks of maximum length lW ,
the exploration score expScore of a decision variable v is the
average of the walk scores ws(v) of all those random walks
within the same episode in which v was one of the randomly
chosen decision variables. ws(v) is computed as follows: (a)
ws(v) = 0 if the walk ended without a conflict. (b) Otherwise,
ws(v) = ωd

lbd(c) , with decay factor 0 < ω ≤ 1, lbd(c) the
LBD score of the clause c learned for the current conflict,
and d ≥ 0 the decision distance between variable v and the
conflict which ended the current walk: If v was assigned at
some step j during the current walk, and the conflict occurred
after step j′ ≥ j, then d = j′ − j. We assign credit to all
the step variables in a walk that ends with a conflict and
give higher credit to variables closer to the conflict. (III)
The novel branching heuristic expVSIDS adds VSDIS score
and expScore of the variables that participated in the most
recent exploration episode. For expVSIDS, a variable v∗ with
maximum combined score is selected for branching. (IV) All
other components remain the same as in the underlying CDCL
SAT solver.

Fig. 1: The 20 adjacent cells denote 20 consecutive decisions
starting from the dth decision, with d > 0, where a green cell
denotes a decision with conflicts and a black cell denotes a
decision without conflicts. Say that amid a CD phase, just
before taking the (d + 9)th decision, expSAT performs an
exploration episode via 3 random walks each limited to 3 steps
. The second walk ends after 2 steps, due to a conflict. A triplet
(v, i, j) represents that the variable v is randomly chosen at
the jth step of the ith walk.



II. GLUE VARIABLE BUMPING

Let a CDCL SAT solver M is running a given SAT instance
F and the current state of the search is S. We call the variables
that appeared in at least one glue clause up to the current state
S Glue Variables. We design a structure-aware variable score
bumping method named Glue Bumping (GB) [2], based on
the notion of glue centrality (gc) of glue variables. Given a
glue variable vg , glue centrality of vg dynamically measures
the fraction of the glue clauses in which vg appears, until the
current state of the search. Mathematically, the glue centrality
of vg , gc(vg) is defined as follows:

gc(vg)←
gl(vg)

ng

, where ng is the total number of glue clauses generated by
the search so far. gl(vg) is the glue level of vg , a count of
glue clauses in which vg appears, with gl(vg) ≤ ng.

A. The GB Method

The GB method modifies a CDCL SAT solver M by adding
two procedures to it, named Increase Glue Level and Bump
Glue Variable, which are called at different states of the search.
We denote by Mgb the GB extension of the solver M .

Increase Glue Level: Whenever Mgb learns a new glue clause
g, before making an assignment with the first UIP variable that
appears in g, it invokes this procedure. For each variable vg
in g, its glue level, gl(vg) is increased by 1.
Bump Glue Variable: This procedure bumps a glue variable
vg , which has just been unassigned by backtracking. First a
bumping factor (bf) is computed as follows:

bf ← activity(vg) ∗ gc(vg)

, where activity(vg) is the current activity score of the variable
vg and gc(vg) is the glue centrality of vg . Finally, the activity
score of vg , activity(vg) is bumped as follows:

activity(vg)← activity(vg) + bf

III. COMMON REASON DECISION VARIABLE SCORE
REDUCTION (CRVR)

During a CDCL search, a single decision can generate more
than one conflicts, from which multiple clauses are learned.
We refer decisions with multiple conflicts as mc decisions. Let
a mc decisionM generates n conflicts, from which it learns a
sequence of clauses L = (L1 . . . Ln). For any clause Li ∈ L,
let Li = Ri∨¬f , where Ri be the reason clause and f be the
unique implication point for the conflict that generates Li.

We call the set of decision variables in R1∩. . .∩Ri∩. . .∩Rn

as Common Decision Variables (CRVs) for M. CRVs are the
common decision variables over the reason clauses in M.

The CRVR scheme decreases the activity scores of those
CRVs, which correspond to mc decisions with average LBD
score higher (i.e., have lower quality learned clauses) than the
recent search average.

IV. SOLVERS DESCRIPTION

We have submitted four CDCL SAT solvers to SAT
Competition-2021, which are based on four combinations of
the three approaches described in the previous sections. Our
solvers are implemented on top of the solver kissat sat (kissat
with sat configuration) [3], CaDiCaL1.4.0 (base solver for
the CaDiCaL hack track) [4], and CryptoMiniSAT5.8.0 [5].
In the following, we describe our solvers:

a) kissat gb: This solver implements the GB method on
top of kissat sat. kissat sat employs two branching heuristics:
VSIDS and VMTF. In kissat gb, the GB scheme is kept active
only when VSIDS is active.

b) kissat crvr gb: This solver implements the GB and
CRVR method on top of kissat sat. In kissat crvr gb, the GB
and CRVR schemes are kept active only when VSIDS is active.

c) cms expV gbL: The baseline CryptoMiniSAT5.8.0
employs a combination of three branching heuristics: LRB,
VSIDS and VMTF. This system extends this baseline by
implementing the GB method on top of LRB, and by replacing
VSIDS with expVSIDS.

d) CaDiCaL hack gb: This system implements the GB
method on the top of CaDiCal1.4.0, only when VSIDS is
active in the baseline system. CaDiCaL hack gb is submitted
to the CaDiCaL hack track of the SAT compeition-2021.

REFERENCES

[1] Md Solimul Chowdhury and Martin Müller and Jia You, Guiding CDCL
SAT Search via Random Exploration amid Conflict Depression, To
appear in Proceedings of AAAI-2020.

[2] Md. Solimul Chowdhury, Martin Müller, Jia-Huai You, Exploiting Glue
Clauses to Design Effective CDCL Branching Heuristics. In Proceedings
of CP 2019: 126-143.

[3] Armin Biere Katalin Fazekas Mathias Fleury Maximilian Heisinge.
CADICAL, KISSAT, PARACOOBA, PLINGELING and TREEN-
GELING Entering the SAT Competition 2020, In Proceedings of SAT
Competition 2020:50-52.

[4] CaDiCal 1.4, https://github.com/arminbiere/cadical/tree/rel-1.4.0, access
date: 02-April-2021.

[5] CryptoMiniSat 5.8.0, https://github.com/msoos/cryptominisat/releases,
access date: 02-April-2021.

2


