
CaDiCaL Modification – Watch Sat
Norbert Manthey

nmanthey@conp-solutions.com
Dresden, Germany

Abstract—The solver CADICAL is different from other partic-
ipants in SAT competitions in many aspects. Porting an algorithm
detail from CADICAL to MERGESAT resulted in a performance
degradation. Hence, this solver modification brings CADICAL’s
behavior closer to other solvers again: when watching a satisfied
literal during unit propagation, the clause is moved to the
watch list of that literal. Previously, CADICAL just updated
the blocking literal of the clause and kept the clause in the
current watch list. The solver CADICAL-WATCH-SAT watches
the satisfied literal.

I. UNIT PROPAGATION IMPROVEMENTS

SAT solvers are used in many fields. Hence, some solvers
are heavily tuned to perform well for the target application.
Other research focusses on improving the overall solver perfor-
mance in general. Many heuristic and algorithmic extensions
to the core algorithm have been proposed [1]. The overall
runtime distributions among the algorithm components still
did not change significantly: unit propagation still takes a vast
majority of the overall runtime [6], [3].

A. Watching Clauses in Propagation

This modification alters an implementation detail of unit
propagation that is different in CADICAL when being com-
pared to other SAT solvers that participate in competitive
events. The two watched literals scheme has been implemented
first in [7]. The next major improvement to skip processing
clauses early was to move literals from the clause into the
watch list data structure, so called blocking literals. MIN-
ISAT 2.2 2.1 [2] started to use a blocking literal. When
propagating a clause, first the current truth value blocking
literal is checked. In case the blocking literal is satisfied, the
related clause is known to be satisfied. Therefore, the clause
does not have to be processed further. This technique helps to
improve the performance of the SAT solver [6].

In MINISAT 2.2, the blocking literal of a clause is typically
the other watched literal. However, any other literal of the
clause could be chosen.

B. How to Handle Satisfied Clauses

When a blocking literal is not satisfied, the clause has to be
processed. During this process, each clause of the watch list
for the current literal has to be iterated. For each clause, the
truth value of all literals has to be checked, in case we find a
conflict clause or unit clauses that force the extension of the
current truth assignment. For satisfied clauses, we only need
to process the literals until we find a satisfied clauses.

One difference between CADICAL and MINISAT 2.2 based
solvers is the way how they treat these satisfied clauses. MIN-
ISAT 2.2 based solvers watch the satisfied literal. CADICAL
implements further extensions, like memorizing the literal in
a clause that was tested when last processing the clause [4].

a) Always Watching the Satisfied Literal: When a satis-
fied literal is detected in a clause during propagating a literal,
the clause is removed from the current watch list. As a next
step, solvers append the clauses to the watch list of the satisfied
literal. Both operations are constant time, but require accessing
the other watch list, which can lead to a cache miss [6]
and TLB miss [3]. The watch list of the other literal can be
higher in the search tree, so that the clause will be touched
less frequent in the remainder of the search. Restart might
reduce the saving, on the other hand solver today use partial
restarts [9], chronological backtracking [8] as well as trail
saving [5]. All these technique give this saving back partially.

This approach is implemented by MINISAT 2.2 based
solvers.

b) Just Update the Blocking Literal: As an alternative,
CADICAL keep watching the current literal, which is now
falsified, but updates the blocking literal to the satisfied literal.
While this breaks the assumption that falsified literals are only
watched for conflict clauses or unit clauses, we still know that
the clause is satisfied. Hence, breaking this assumption does
not have consequences. The positive effect is that the clause
does not have to be removed from the current watch list. This
results in no cache miss, nor a TLB miss. However, when the
search progresses, after backtracking, the same clause might
need to be processed again. In case the satisfied literal is
still satisfied, only the blocking literal has to be processed.
Otherwise, backtracking also removed the assignment for the
blocking literal, so that the whole clause needs to be processed
again.

c) Watching the Satisfied Literal in CADICAL: Prelimi-
nary testing with MERGESAT when just updating the blocking
literal of a clause resulted in a performance degradation.
Hence, removing this technique for CADICAL might result in
a performance improvement. The solver CADICAL-WATCH-
SAT implements this modification.

Not processing a satisfied clause during propagation soon
again can result in a different order of propagated literals,
as well as different conflicts, and consequently in different
heuristic updates and many different follow-up search steps
of the solver. Hence, performance differences can not only be
attributed to less or more compute resource utilization.



II. AVAILABILITY

The source of the modified CADICAL is publicly available
at https://github.com/conp-solutions/cadical/tree/watch-sat.
The used version of the tool is “rel-1.4.0-1-gc09aa31”.

REFERENCES

[1] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds., Handbook of
Satisfiability. Amsterdam: IOS Press, 2009.

[2] N. Eén and N. Sörensson, “An extensible SAT-solver,” in SAT 2003, ser.
LNCS, E. Giunchiglia and A. Tacchella, Eds., vol. 2919. Heidelberg:
Springer, 2004, pp. 502–518.

[3] J. K. Fichte, N. Manthey, J. Stecklina, and A. Schidler, “Towards faster
reasoners by using transparent huge pages,” in Principles and Practice of
Constraint Programming, H. Simonis, Ed. Cham: Springer International
Publishing, 2020, pp. 304–322.

[4] I. P. Gent, “Optimal implementation of watched literals and more general
techniques,” J. Artif. Intell. Res., vol. 48, pp. 231–251, 2013. [Online].
Available: https://doi.org/10.1613/jair.4016

[5] R. Hickey and F. Bacchus, “Trail saving on backtrack,” in Theory and
Applications of Satisfiability Testing – SAT 2020, L. Pulina and M. Seidl,
Eds. Cham: Springer International Publishing, 2020, pp. 46–61.

[6] S. Hölldobler, N. Manthey, and A. Saptawijaya, “Improving resource-
unaware SAT solvers,” ser. LNCS, C. G. Fermüller and A. Voronkov,
Eds., vol. 6397. Heidelberg: Springer, 2010, pp. 519–534.

[7] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient SAT solver,” in DAC 2001. New York:
ACM, 2001, pp. 530–535.

[8] A. Nadel and V. Ryvchin, “Chronological backtracking,” in Theory and
Applications of Satisfiability Testing – SAT 2018, O. Beyersdorff and
C. M. Wintersteiger, Eds. Cham: Springer International Publishing, 2018,
pp. 111–121.

[9] P. van der Tak, A. Ramos, and M. Heule, “Reusing the assignment trail
in cdcl solvers,” JSAT, vol. 7, no. 4, pp. 133–138, 2011.

https://github.com/conp-solutions/cadical/tree/watch-sat
https://doi.org/10.1613/jair.4016

	Unit Propagation Improvements
	Watching Clauses in Propagation
	How to Handle Satisfied Clauses

	Availability
	References

