
!!! DRAFT !!! DRAFT !!!
Proceedings of

SAT COMPETITION 2022
Solver and Benchmark Descriptions

Tomás̆ Balyo, Marijn J. H. Heule, Markus Iser, Matti Järvisalo, and Martin Suda (editors)

2

PREFACE

The area of Boolean satisfiability (SAT) solving keeps on making progress. Besides new algorithms
and better heuristics, refined implementation techniques turned out to be vital for the success story
of SAT solving. To keep up the driving force in improving SAT solvers, SAT solver competitions
provide opportunities for solver developers to present their work to a broader audience and to
objectively compare the performance of their own solvers with that of other state-of-the-art solvers.

SAT Competition 2022 (SC 2022, https://satcompetition.github.io/2022/), a competitive
event for SAT solvers, was organized as a satellite event of the 25th International Conference on
Theory and Applications of Satisfiability Testing (SAT 2022). SC 2022 stands in the tradition of the
previously organized main competitive events for SAT solvers: the SAT Competitions held 2002-
2005, biannually during 2007-2013, 2014, 2016–2018, and 2020–2021; the SAT Races held in 2006,
2008, 2010, 2015, and 2019; and SAT Challenge 2012.

SC 2022 consisted of a total of four tracks: Main Track (with CaDiCaL 1.4 Hack and No Limits
sub-tracks), Parallel Track, Cloud Track and a special Anniversary Track in celebration of the
20th anniversary of this series of SAT Competitions (as well as the 30th anniversity of the first
competition). The benchmarks for the anniversary track comprise of all benchmark instances which
have been used in Application, Crafted, and Main Tracks of previous SAT competitions.

There were two ways of contributing to SC 2022: by submitting one or more solvers to participate in
the competition and by submitting interesting benchmark instances on which the submitted solvers
could be evaluated in the competition. The rules of SC 2022 required all contributors to submit
a short, 1-2 page long description as part of their contribution. This book contains these non-
peer-reviewed descriptions in a single volume, providing a way of consistently citing the individual
descriptions and finding out more details on the individual solvers and benchmarks.

Successfully running SC 2022 would not have been possible without active support from the com-
munity at large. We would like to thank the StarExec initiative (http://www.starexec.org) for
the computing resources needed to run SC 2022. Many thanks go to Aaron Stump for his invaluable
help in setting up StarExec to accommodate for the competition’s needs. Furthermore, we thank
Amazon for providing the resources and support to develop parallel and distributed solvers on the
AWS cloud and for executing the Cloud and Parallel tracks.

Finally, we would like to emphasize that a competition does not exist without participants: we
thank all those who contributed to SC 2022 by submitting either solvers or benchmarks and the
related description.

Tomás̆ Balyo, Marijn J. H. Heule, Markus Iser, Matti Järvisalo, & Martin Suda
SAT Competition 2022 Organizers

3

4

Contents

Preface . 3

Solver Descriptions

Gimsatul, IsaSAT, Kissat Entering the SAT Competition 2022
Armin Biere and Mathias Fleury . 10

BreakID-kissat and BreakID-kissat-WithUNSATCertificates in SAT Competi-
tion 2022
Bart Bogaerts, Jakob Nordström, Andy Oertel, and Çağrı Uluç Yıldırımoğlu . . 12

Kissat_MAB: Upper Confidence Bound Strategies to Combine VSIDS and CHB
Mohamed Sami Cherif, Djamal Habet, and Cyril Terrioux 14

CDCL Solvers based on Bounded Exploration and the Glue Bumping method
Md Solimul Chowdhury . 16

Kissat-ELS and its friends at the SAT Competition 2022
Fei Geng, Lei Yan, and ShuCheng Zhang . 18

Combining Hybrid Walking Strategy with Kissat_MAB, CaDiCaL, and LStech-Maple
Jiongzhi Zheng, Kun He, Zhuo Chen, Jianrong Zhou, and Chu-Min Li 20

Descriptions for CadicalReorder SAT Solver
Junhua Huang, Hui-Ling Zhen, Wanqian Luo, and Mingxuan Yuan 22

MapleLCMDistChronoBT-DL-v3, the duplicate learnts heuristic-aided solver at the SAT
Competition 2022
Stepan Kochemazov, Oleg Zaikin, Victor Kondratiev, and Alexander Semenov . 23

HKIS, HCAD and PAKIS in the SAT Competition 2022
Rodrigue Konan Tchinda and Clémentin Tayou Djamegni 24

MergeSat, Merge-Mallob and Mallob-MergeCadLing
Norbert Manthey . 25

Watch Sat and LTO for CaDiCaL and Kissat
Norbert Manthey . 28

SeqFROST at the SAT Race 2022
Muhammad Osama and Anton Wijs . 30

SLIME SAT Solver
Oscar Riveros . 32

Solvers Cadical_ESA and Kissat_MAB_ESA in 2022 SAT competition
Shuolin Li, Jordi Coll, Chu-Min Li, Mao Luo, Djamal Habet, and Felip Manyà 33

Kissat-MAB-rephasing and Kissat_relaxed
Xinyan Chen, Wenxuan Guo, Wanqian Luo, and Hui-Ling Zhen 35

5

CDCL Solvers with Improved Local Search Cooperation and Pre-processing
Zhihan Chen, Xindi Zhang, Shaowei Cai, and Pinyan Lu 37

Kissat_Adaptive_Restart, Kissat_Cfexp: Adaptive Restart Policy and Variable Scoring
Improvement
Yang Li, Yuqi Jia, Wanqian Luo, Hui-Ling Zhen, Xijun Li, Mingxuan Yuan,
and Junchi Yan . 39

CaDiCal-DVDL
Zhenjiang Zhao, Takahisa Toda, and Takashi Kitamura 41

Paracooba Enters SAT Competition 2022
Maximilian Levi Heisinger . 42

DPS-Kissat
Hidetomo Nabeshima, Tsubasa Fukiage, Yuto Obitsu, Xiao-Nan Lu, and Kat-
sumi Inoue . 43

ITMO-ParSAT, the parallel solver utilizing probabilistic backdoors at the SAT Competi-
tion 2022
Ibragim Dzhiblavi, Daniil Chivilikhin, Stepan Kochemazov, and Alexander Se-
menov . 44

Mallob in the SAT Competition 2022
Dominik Schreiber . 46

P-KISSAT-MAB: Painless based parallel SAT solvers
Anissa Kheireddine, Souheib Baarir, and Etienne Renault 48

P-MCOMSPS: a parallel SAT solver with asynchronous clause strengthening
Vincent Vallade, Souheib Baarir, Julien Sopena, Etienne Renault, Saeed Nejati,
and Vijay Ganesh . 49

ParKissat: Random Shuffle Based and Pre-processing Extended Parallel Solvers with
Clause Sharing
Xindi Zhang, Zhihan Chen, and Shaowei Cai . 51

Benchmark Descriptions

AWS CBMC Benchmarks
Ronak Fofaliya, Jim Grundy, Robert Jones, Kareem Khazem, Benjamin Kiesl,
Angelo Nakos, Michael Tautschnig, and Michael W. Whalen 54

Hardware Model Checking Certificates
Emily Yu, Nils Froleyks, Armin Biere, and Mathias Fleury 56

Minimum Disagreement Parity (MDP) Benchmark
Randal E. Bryant . 57

Verifying Optimums of Weighted (Partial) Max-SAT Formulas
Mohamed Sami Cherif, Djamal Habet, and Cyril Terrioux 59

The Graceful Production Problem
Md Solimul Chowdhury . 61

Bounded Model Checking Instances generated by ABC-BMC
Fei Geng, Lei Yan, and ShuCheng Zhang . 63

Unique Reconfiguration Sequence
Nils Froleyks, Emily Yu, and Armin Biere . 64

Group ring units in SAT
Giles Gardan . 65

6

Description of CEC Benchmarks
Junhua Huang, Hui-Ling Zhen, Wanqian Luo, and Mingxuan Yuan 66

Benchmarks encoding logical equivalence checking for sorting algorithms
Ilya Otpuschennikov, Alexander Semenov, Victor Kondratiev, Daniil Chivi-
likhin, and Stepan Kochemazov . 67

Sports Timetabling SAT Benchmarks
Martin Mariusz Lester . 68

Solving Summle.net With SAT
Norbert Manthey . 70

Verifying Linked List Safety Properties in AWS C99 Package with CBMC
Muhammad Osama and Anton Wijs . 72

SAT-X Unsolved Problems Benchmarks
Oscar Riveros . 73

Two Types of N-bits Inputs Multiplier Circuits Are Transformed to CNF
Shunyang Bi and Hailong You . 74

Time-indexed encoding of Multi-mode RCPSP
Jordi Coll, Shuolin Li, Chu-Min Li, Felip Manyà, and Djamal Habet 75

Circuit Model Checking with BMC
Xindi Zhang, Zhihan Chen, and Shaowei Cai . 77

Factory Worker Dispatching problem
Xindi Zhang, Zhihan Chen, and Shaowei Cai . 78

Equivalence Checking of EPFL Benchmarks
Xinyan Chen, Wenxuan Guo, Wanqian Luo, Hui-Ling Zhen, Xijun Li, Mingx-
uan Yuan, and Junchi Yan . 80

The SAT Encoding for Graph Isomorphism
Yang Li, Yuqi Jia, Wanqian Luo, Hui-ling Zhen, Xijun Li, Mingxuan Yuan,
and Junchi Yan . 81

Set Covering with Conflict Benchmarks
Jiongzhi Zheng, Kun He, Zhuo Chen, Jianrong Zhou, and Chu-Min Li 82

Sudoku Clue Generation Problem Instances
Zhenjiang Zhao, Takahisa Toda, and Takashi Kitamura 83

Solver Index . 85
Benchmark Index . 86
Author Index . 87

7

8

SOLVER DESCRIPTIONS

GIMSATUL, ISASAT, KISSAT
Entering the SAT Competition 2022

Armin Biere Mathias Fleury
University of Freiburg, Germany

Abstract—This system description explains the features of our
new multi-threaded SAT solver GIMSATUL submitted to the
parallel track of the SAT Competition 2022, as well as updates
to our sequential SAT solvers ISASAT, and KISSAT, submitted
to the corresponding sequential tracks of the competition.

IMPROVED SWEEPING IN KISSAT

Already in version “KISSAT SC2021 SWEEP” submitted to
the SAT Competition 2021 we supported SAT based sweep-
ing [1] which relies on the internal embedded SAT solver
KITTEN to find backbones and equivalent literals extracted
from the environment clauses of a candidate variable in which
it occurs and some of its neighbouring clauses. The algorithm
was improved by eagerly substituting literals determined to be
equivalent already during sweeping and more careful schedul-
ing and rescheduling of candidate variables, particularly within
the same sweeping phase.

Furthermore we sped up the common case of satisfiable
queries to the embedded SAT solver KITTEN, by adding to
KITTEN the following model flipping API function:

bool kitten flip literal (kitten *, unsigned lit);
It is inspired by non-recursive model rotation [2] used in MUS
extraction. Our new model-flipping tries to flip the value of
the specified literal in the last model returned by KITTEN
and succeeds if the resulting new assignment still satisfies
the formula. On success the model is updated. Otherwise if
flipping falsifies the formula the last model is not touched.

In our application we further require that the model does
not change for other literals. Thus the implementation of
model flipping is straightforward and simply consists of just
traversing the clauses watched by the literal to be flipped and
checking whether there are “one-satisfied” clauses with only
that literal satisfying the watched clause (assuming it was
assigned to true in the last model).

We make use of this new API function by trying to flip
during sweeping all literals of either the remaining backbone
candidates if there are any left or the literals in candidate
equivalent literal classes. If all flipped literal attempts failed
we have to fall back to a more expensive actual SAT solver
call to KITTEN. If flipping succeeds, which happens actually
surprisingly often, we refine the backbone candidate list or the
candidate equivalent literal class as usual.

In [1] we described how we use randomization of saved
phases before KITTEN queries to reduce the number of neces-

Supported by Austrian Science Fund (FWF) project W1255-N23 and the
Inst. of Formal Methods and Verification, Johannes Kepler University Linz.

sary refinements in the common case that sweeping is mostly
unsuccessful for a candidate variable. It turns out that for
some benchmarks the old version “KISSAT SC2021 SWEEP”
spent a substantial percentage of time during sweeping in just
generating random bits for this purposes. By using all 64 bits
produced by our random number generator each time instead
of just one (while dropping 63 bits) and updating saved phases
in a bit-parallel fashion we could remove that bottle-beck.

KISSAT SC2022 BULKY

Improved sweeping above is used in all our three versions of
KISSAT submitted to the SAT competition 2022. The version
“KISSAT SC2022 BULKY” submitted in 2022 inherits most
features of version “KISSAT SC2021 SWEEP” [1] submitted
in 2021 but includes the following changes:

• added ACIDS [3] branching variable heuristics (disabled)
• added CHB [4] variable branching heuristic (but disabled

by default) inspired by the success of ’kissat mab’ [5]
• faster randomization of phases in the Kitten sub-solver
• literal flipping for faster refinement during sweeping
• disabled priority queue for variable elimination (elimina-

tion attempts follow the given fixed variable order)
• disabled by default reusing the trail during restarts
• disabled by default hyper ternary resolution
• initial local search through propagation (similar to

”warmup” runs of Donald Knuth [6] and how local search
is initialized in ”ReasonLS” solvers by Shaowei Cai [7])

• actual watch replacement of true literals during unit
propagation instead of just updating the blocking literal
(as suggested by Norbert Manthey [8])

• fixed clause length and variable occurrences limits during
variable elimination instead of dynamically increasing

KISSAT SC2022 LIGHT AND KISSAT SC2022 HYPER

In order to focus on the most important features of KISSAT,
we removed those that did not substantially improve perfor-
mance on the last three competitions benchmarks. As a result
of these experiments we removed the following features:

• autarky reasoning
• eager forward and backward subsumption during variable

elimination (global forward subsumption only)
• caching and reusing of minima during local search
• failed literal probing
• transitive reduction of the binary implication graph
• eager subsumption of recently learned clauses
• XOR gate extraction during variable elimination

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

10

• delaying of inprocessing functions based on formula size
• vivification of irredundant clauses
• keeping untried elimination, backbone and vivification

candidates for next inprocessing round (removed options)
• initial focused mode phase limited only by conflicts now

(not as before also by ticks)
The light version also removes hyper binary resolution,

enabling the use of more variables (229−1 instead of 228−1).

GIMSATUL SC2022
Our new SAT solver GIMSATUL is a parallel multi-threaded

SAT solver written from scratch in C in six weeks. Its core
engine follows the architecture of “KISSAT SC2022 LIGHT”,
even though it is missing non-chronological backtracking, on-
the-fly subsumption, advanced shrinking, binary implication
graph backbones, advanced definition extraction and sweeping.

The main new feature is to aggressively exchange learned
clauses by sharing and reference counting instead of copying,
reviving an old line of research. The solver is built on top
of pthreads, but also uses C11 atomic operations as well as
several lock-less fast-paths. For original clauses this already
gives substantial memory savings which extends to learned
clauses too and allows to generate compact DRUP proofs.

The simplification procedure implements bounded variable
elimination, subsumption and equivalent literal substitution
and is run up-front as preprocessing in single threaded mode
and further in regular intervals after synchronizing all threads
and handing over control and clauses to one single simplifi-
cation thread. During search each solver thread also performs
inprocessing in form of vivification and failed literal probing.

References to learned clauses of low glucose level (LBD)
are immediately put in thread local pools to be exported.
All exporting and importing thread combinations have exactly
one pool and each pool has several slots ordered by glucose
level. Threads import clauses from the slots of their pool of a
randomly chosen thread, prioritized by glucose level. Except
for units, which are always eagerly and completely imported,
at most one clause is imported before making a decision.

For more details on “GIMSATUL SC2022” and particularly
extensive experimental results on scalability and other aspects
of our new solver we refer to our presentation at the workshop
on Pragmatics of SAT (POS’22) [9].

ISASAT
This is the first submission of the fully verified SAT solver

ISASAT to the SAT Competition (and to the best of our
knowledge, the first submission of a fully verified SAT solver).
Since the submission to the EDA Challenge 2021 [10], we im-
plemented only few new features, namely pure literal detection
and resolution and deduplication of binary clauses. The first
features is our first non-equivalence preserving transformation.

The main work went into updating the Isabelle version
we are using and the version of the LLVM-based library of
synthesis [11]. With the update to Isabelle2021-1, synthesis
started to take hours for even the simplest function, so we

had to replace the formalization of the solver state by a proper
structure and reorganize our entire development around that.

Unrelated to our verification, we added proof logging to our
solver. Remark that there is absolutely no proof of correctness
of the generated proofs: The correctness theorem does not
mention the proofs (and it happened during development that
we forgot to print some of them leading to incorrect proofs–but
the result was always correct).

The submitted sources of the SAT solver contain only files
generated by Isabelle in the intermediate representation used
by clang. For the complete sources (including correctness the-
orem and comments), refer to the sc2022 tag in the IsaFOL
repository https://bitbucket.org/isafol/isafol/src/sc2022/.

LICENSE

All our solvers are licensed under an MIT license, with
GIMSATUL available at https://github.com/arminbiere/gimsatul
KISSAT at https://github.com/arminbiere/kissat and further
ISASAT at https://m-fleury.github.io/isasat/isasat-release/.

REFERENCES

[1] A. Biere, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat, Paracooba
entering the SAT Competition 2021,” in Proc. of SAT Competition 2021
– Solver and Benchmark Descriptions, ser. Dept. of Computer Science
Report Series B, T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo,
and M. Suda, Eds., vol. B-2021-1. Univ. of Helsinki, 2021, pp. 10–13.

[2] J. P. M. Silva and I. Lynce, “On improving MUS extraction algorithms,”
in Theory and Applications of Satisfiability Testing - 14th International
Conference, SAT 2011, ser. LNCS, K. A. Sakallah and L. Simon, Eds.,
vol. 6695. Springer, 2011, pp. 159–173.

[3] A. Biere and A. Fröhlich, “Evaluating CDCL variable scoring schemes,”
in Theory and Applications of Satisfiability Testing - SAT 2015 - 18th
International Conference, SAT 2015, ser. LNCS, M. Heule and S. A.
Weaver, Eds., vol. 9340. Springer, 2015, pp. 405–422.

[4] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, “Exponential
recency weighted average branching heuristic for SAT solvers,” in
Proc. 13th AAAI Conf. on Artificial Intelligence, AAAI 2016, D. Schu-
urmans and M. P. Wellman, Eds. AAAI Press, 2016, pp. 3434–3440.

[5] M. S. Cherif, D. Habet, and C. Terrioux, “Combining VSIDS and CHB
using restarts in SAT,” in 27th International Conference on Principles
and Practice of Constraint Programming, CP 2021, ser. LIPIcs, L. D.
Michel, Ed., vol. 210. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021, pp. 20:1–20:19.

[6] D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 6:
Satisfiability, 1st ed. Addison-Wesley Professional, 2015.

[7] S. Cai, C. Luo, X. Zhang, and J. Zhang, “Improving local search
for structured SAT formulas via unit propagation based construct and
cut initialization (short paper),” in 27th International Conference on
Principles and Practice of Constraint Programming, CP 2021, ser.
LIPIcs, L. D. Michel, Ed., vol. 210. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021, pp. 5:1–5:10.

[8] N. Manthey, “CaDiCaL modification – Watch Sat,” in Proc. of SAT Com-
petition 2021 – Solver and Benchmark Descriptions, ser. Department of
Computer Science Report Series B, T. Balyo, N. Froleyks, M. Heule,
M. Iser, M. Järvisalo, and M. Suda, Eds., vol. B-2021-1. University of
Helsinki, 2021, pp. 28–29.

[9] M. Fleury and A. Biere, “Scalable proof-producing multi-threaded SAT
solving with Gimsatul through sharing instead of copying clauses,” in
Pragmatics of SAT 2022, D. L. Berre and M. Järvisalo, Eds., 2022.

[10] M. Fleury, “CaDiCaL, Kissat, Paracooba entering the EDA Challenge
2021,” 2021, submitted to the EDA Challenge 2021.

[11] P. Lammich, “Generating verified LLVM from Isabelle/HOL,” in 10th
International Conference on Interactive Theorem Proving, ITP 2019, ser.
LIPIcs, J. Harrison, J. O’Leary, and A. Tolmach, Eds., vol. 141. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019, pp. 22:1–22:19.

11

BREAKID-KISSAT and
BREAKID-KISSAT-WITHUNSATCERTIFICATES in

SAT Competition 2022 (System Description)
Bart Bogaerts

Vrije Universiteit Brussel
Brussels, Belgium

ORCID: 0000-0003-3460-4251

Jakob Nordström
University of Copenhagen

Copenhagen, Denmark
and Lund University

Lund, Sweden
ORCID: 0000-0002-2700-4285

Andy Oertel
Lund University

Lund, Sweden
email address or ORCID

Çağrı Uluç Yıldırımoğlu
Vrije Universiteit Brussel

Brussels, Belgium
cagriuluc96@gmail.com

Abstract—BREAKID-KISSAT and BREAKID-KISSAT-
WITHUNSATCERTIFICATES combine the symmetry breaking
preprocessor BREAKID with the SAT solver KISSAT.

I. INTRODUCTION

For several years, participation in the main tracks of the
SAT competition has required solvers to output proofs in
the DRAT format [11]. Unfortunately, this means that several
state-of-the-art solving techniques are de facto excluded from
participation in these tracks. One prime example of such a
technique is symmetry breaking: while for limited types of
symmetries, breaking constraints can be derived in DRAT [8],
for the general case, no techniques are known. Our two solvers
employ symmetry breaking and hence only participate in the
no-limit track of the competition.

Our solvers are a combination of the symmetry breaker
BREAKID [3] and the SAT solver KISSAT [10].

The difference between BREAKID-KISSAT and BREAKID-
KISSAT-WITHUNSATCERTIFICATES is that BREAKID-
KISSAT-WITHUNSATCERTIFICATES does provide UNSAT
certificates. For the reason mentioned above, the certificates
are not in the DRAT format, but in the VERIPB format and
can be verified by VERIPB. VERIPB [4]–[7] was originally
designed as a proof checker for pseudo-Boolean satisfiability
and was recently extended to pseudo-Boolean optimization
[1], making it not just a viable candidate for certification of
SAT techniques, but also for MaxSAT. The underlying proof
format is a strict generalization of DRAT. Morover, since it is
based on the cutting planes proof system [2], it also naturally
facilitates proof logging for advanced techniques such as
XOR and cardinality reasoning [7].

II. MAIN TECHNIQUES

The workflow of our two solvers is as follows:

• First, the instance to a colored graph in such a way
that syntactic symmetries of the problem correspond to
automorphisms of the graph.

• Next, BREAKID uses SAUCY [9] to detect automor-
phisms of the constructed graph.

• Next, BREAKID optimizes the set of detected symmetries
to ensure complete breaking of certain subgroups. For
each of the resulting symmetries, it creates symmetry
breaking clauses.

• Subsequently, the original instance, together with the
symmetries is passed to KISSAT, which solves the re-
sulting instnace.

For BREAKID-KISSAT-WITHUNSATCERTIFICATES,
BREAKID and KISSAT each produce a part of the resulting
proof.

III. AVAILABILITY

The source code of BREAKID is available at https://
bitbucket.org/krr/breakid/src. Our modified version of KISSAT
to output proofs in the VERIPB format rather than DRAT is
available at https://gitlab.com/MIAOresearch/kissat fork.

IV. ACKNOWLEDGEMENT

We would like to thank everyone who contributed to
SAUCY, BREAKID, and KISSAT for their efforts and for
making their tools publicly available.

REFERENCES

[1] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.
Certified symmetry and dominance breaking for combinatorial optimi-
sation. In Proceedings of AAAI, 2022. accepted.

[2] William J. Cook, Collette R. Coullard, and György Turán. On the
complexity of cutting-plane proofs. Discrete Applied Mathematics,
18(1):25–38, 1987.

[3] Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker.
Improved static symmetry breaking for SAT. In Nadia Creignou and
Daniel Le Berre, editors, Theory and Applications of Satisfiability
Testing - SAT 2016 - 19th International Conference, Bordeaux, France,
July 5-8, 2016, Proceedings, volume 9710 of Lecture Notes in Computer
Science, pages 104–122. Springer, 2016.

[4] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.
Justifying all differences using pseudo-Boolean reasoning. In Proceed-
ings of the 34th AAAI Conference on Artificial Intelligence (AAAI ’20),
pages 1486–1494, February 2020.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

12

[5] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström,
Patrick Prosser, and James Trimble. Certifying solvers for clique and
maximum common (connected) subgraph problems. In Proceedings
of the 26th International Conference on Principles and Practice of
Constraint Programming (CP ’20), volume 12333 of Lecture Notes in
Computer Science, pages 338–357. Springer, September 2020.

[6] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph
isomorphism meets cutting planes: Solving with certified solutions. In
Proceedings of the 29th International Joint Conference on Artificial
Intelligence (IJCAI ’20), pages 1134–1140, July 2020.

[7] Stephan Gocht and Jakob Nordström. Certifying parity reasoning effi-
ciently using pseudo-Boolean proofs. In Proceedings of the 35th AAAI
Conference on Artificial Intelligence (AAAI ’21), pages 3768–3777,
February 2021.

[8] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Expressing
symmetry breaking in DRAT proofs. In Proceedings of the 25th
International Conference on Automated Deduction (CADE-25), volume
9195 of Lecture Notes in Computer Science, pages 591–606. Springer,
August 2015.

[9] Hadi Katebi, Karem A. Sakallah, and Igor L. Markov. Symmetry and
satisfiability: An update. In Ofer Strichman and Stefan Szeider, editors,
SAT, volume 6175 of LNCS, pages 113–127. Springer, 2010.

[10] Kissat SAT solver. http://fmv.jku.at/kissat/.
[11] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-

trim: Efficient checking and trimming using expressive clausal proofs.
In Proceedings of the 17th Internatjuional Conference on Theory and
Applications of Satisfiability Testing (SAT ’14), volume 8561 of Lecture
Notes in Computer Science, pages 422–429. Springer, July 2014.

13

Kissat MAB: Upper Confidence Bound Strategies
to Combine VSIDS and CHB

Mohamed Sami Cherif, Djamal Habet and Cyril Terrioux
Aix-Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France

{mohamed-sami.cherif, djamal.habet, cyril.terrioux}@univ-amu.fr

Abstract—This document describes two solvers,
Kissat MAB UCB and Kissat MAB MOSS, submitted to
the 2022 SAT competition. The solvers are based on Kissat,
the winner of the 2020 SAT competition, which we augment
with a Multi-Armed Bandit (MAB) framework. The submitted
solvers rely on two different Upper Confidence Bound strategies,
namely UCB1 and MOSS, to adaptively choose a relevant
heuristic among VSIDS and CHB at each restart.

Index Terms—Branching Heuristics, Multi-Armed Bandit, Up-
per Confidence Bound

I. INTRODUCTION

Conflict Driven Clause Learning (CDCL) [12] solvers are
known to be efficient on structured instances and manage to
solve ones with a large number of variables and clauses. An
important component in such solvers is the branching heuristic
which picks the next variable to branch on. The Variable
State Independent Decaying Sum (VSIDS) [13] has been the
dominant heuristic since its introduction two decades ago.
Recently, Liang and al. devised a new heuristic for SAT, called
Conflict History-Based (CHB) branching heuristic [10], and
showed that it is competitive with VSIDS. In the last years,
VSIDS and CHB have dominated the heuristics landscape
as practically all the CDCL solvers presented in recent SAT
competitions and races incorporate a variant of one of them.

Recent research has shown the interest of machine learning
in designing efficient search heuristics for SAT [9]–[11] as
well as for other decision problems [6], [14]–[16]. One of the
main challenges is defining a heuristic which can have high
performance on any considered instance. Indeed, a heuristic
can perform very well on a family of instances while failing
drastically on another. To this end, we use reinforcement
learning under the Multi-Armed Bandit (MAB) framework
to pick an adequate heuristic among CHB and VSIDS for
each instance [7]. The MAB takes advantage of the restart
mechanism in modern CDCL algorithms to evaluate each
heuristic and choose the best one accordingly. The MAB uses
Upper Confidence Bound [1] strategies to select an arm at
each restart.

II. COMBINING VSIDS AND CHB THROUGH MAB

Let A = {V SIDS,CHB} be the set of arms for the
MAB containing different candidate heuristics. The proposed
framework selects a heuristic a ∈ A at each restart of the
backtracking algorithm. To choose an arm, MAB relies on
a reward function calculated during each run to estimate the

performance of the chosen branching heuristic. We choose a
reward function that estimates the ability of a heuristic to reach
conflicts quickly and efficiently. If t denotes the current run,
the reward of arm a ∈ A is calculated as follows:

rt(a) =
log2(decisionst)

decidedV arst

decisionst and decidedV arst respectively denote the number
of decisions and the number of decision variables, i.e. variables
which were branched on at least once, in the run t. This
reward function is adapted from the explored sub-tree measure
introduced in [14].

III. UPPER CONFIDENCE BOUND STRATEGIES FOR MAB

We use two upper confidence bound strategies to select an
arm at each restart, namely UCB1 [3] and MOSS [2]. The
following parameters are maintained for each candidate arm
a ∈ A:

• nt(a) is the number of times the arm a is selected during
the t runs,

• r̂t(a) is the empirical mean of the rewards of arm a over
the t runs.

UCB1 and MOSS select the arm a ∈ A that respectively
maximizes UCB(a) and MOSS(a), defined as follows :

UCB(a) = r̂t(a) + c

√
ln(t)

nt(a)

MOSS(a) = r̂t(a) + c

√
1

nt(a)
ln

(
max

(
t

K.nt(a)
, 1

))

The left-side term of UCB(a) and MOSS(a) is sim-
ilar and aims to put emphasis on arms that received the
highest rewards. Conversely, the right-side term ensures the
exploration of underused arms. The parameter c can help to
appropriately balance the interchange between the exploitation
and exploration phases in the MAB framework.

IV. IMPLEMENTATION AND SUBMISSIONS

We implement this MAB framework in Kissat [5], which
won first place in the main track of the SAT Competition
2020. Note that this solver is a condensed and improved
reimplementation of the reference and competitive solver
CaDiCaL [4] in C. We submit two solvers to the Main
and Anniversary tracks of the 2022 SAT competition. The

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

14

first, called Kissat MAB UCB, uses the UCB1 strategy and
corresponds to the solver Kissat MAB [8] which we submitted
to the 2021 SAT competition. This solver turned out to be
highly competitive as it won the Main and SAT Main tracks
of the previous competition. Our study in [7] also shows that
the MOSS strategy can be highly competitive with respect
to UCB1 as it outperformed it in terms of the number of
solved instances and solving time on the 2018, 2019 and 2020
benchmarks. Therefore, we submit our second solver, called
Kissat MAB MOSS, which relies on the MOSS strategy to
choose a heuristic at each restart.

Note that we maintain the VSIDS variant already im-
plemented in Kissat which is similar to Chaff’s where all
analyzed variables are bumped after every conflict [13]. We
also augment the solver with the heuristic CHB as specified
in [10]. In addition, we set the parameter c to 2. The rewards
are initialized by launching each heuristic once during the
first restarts. It is important to note that the only modified
components of the solver are the decision component and the
restart component, i.e., all the other components as well as the
default parameters of the solver are left untouched.

REFERENCES

[1] R. Agrawal. Sample mean based index policies by o (log n) regret
for the multi-armed bandit problem. Advances in Applied Probability,
27(4):1054–1078, 1995.

[2] J.-Y. Audibert and S. Bubeck. Minimax Policies for Adversarial and
Stochastic Bandits. In COLT 2009 - The 22nd Conference on Learning
Theory, Montreal, Quebec, Canada, June 18-21, 2009, 2009.

[3] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time Analysis of the
Multiarmed Bandit Problem. Mach. Learn., 47(2-3):235–256, 2002.

[4] A. Biere. CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT Enter-
ing the SAT Competition 2017. In T. Balyo, M. Heule, and M. Järvisalo,
editors, Proc. of SAT Competition 2017 – Solver and Benchmark
Descriptions, volume B-2017-1 of Department of Computer Science
Series of Publications B, pages 14–15. University of Helsinki, 2017.

[5] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020. In T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo,
and M. Suda, editors, Proc. of SAT Competition 2020 – Solver and
Benchmark Descriptions, volume B-2020-1 of Department of Computer
Science Report Series B, pages 51–53. University of Helsinki, 2020.

[6] M. S. Cherif, D. Habet, and C. Terrioux. On the Refinement of Conflict
History Search Through Multi-Armed Bandit. In M. Alamaniotis
and S. Pan, editors, Proceedings of 2020 IEEE 32nd International
Conference on Tools with Artificial Intelligence (ICTAI), pages 264–271.
IEEE, 2020.

[7] M. S. Cherif, D. Habet, and C. Terrioux. Combining VSIDS and CHB
Using Restarts in SAT. In L. D. Michel, editor, 27th International
Conference on Principles and Practice of Constraint Programming, CP
2021, Montpellier, France (Virtual Conference), October 25-29, 2021,
volume 210 of LIPIcs, pages 20:1–20:19. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021.

[8] M. S. Cherif, D. Habet, and C. Terrioux. Kissat MAB: Combining
VSIDS and CHB through Multi-Armed Bandit. In Proceedings of SAT
Competition 2021: Solver and Benchmark Descriptions, volume B-2021-
1 of Department of Computer Science Series of Publications B, page 15.
University of Helsinki, 2021.

[9] V. Kurin, S. Godil, S. Whiteson, and B. Catanzaro. Improving SAT
Solver Heuristics with Graph Networks and Reinforcement Learning.
CoRR, 2019.

[10] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki. Exponential
Recency Weighted Average Branching Heuristic for SAT Solvers. In
Proceedings of the AAAI Conference on Artificial Intelligence, pages
3434–3440, 2016.

[11] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki. Learning rate
based branching heuristic for SAT solvers. In Proceedings of the
International Conference on Theory and Applications of Satisfiability
Testing, pages 123–140, 2016.

[12] J. P. Marques-Silva and K. A. Sakallah. GRASP: A search algorithm for
propositional satisfiability. IEEE Transactions on Computers, 48(5):506–
521, 1999.

[13] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver. In Proceedings of the Design
Automation Conference, pages 530–535, 2001.

[14] A. Paparrizou and H. Wattez. Perturbing Branching Heuristics in
Constraint Solving. In H. Simonis, editor, Principles and Practice
of Constraint Programming, pages 496–513, Cham, 2020. Springer
International Publishing.

[15] H. Wattez, F. Koriche, C. Lecoutre, A. Paparrizou, and S. Tabary.
Learning Variable Ordering Heuristics with Multi-Armed Bandits and
Restarts. In Proceedings of the European Conference on Artificial
Intelligence, 2020.

[16] W. Xia and R. H. C. Yap. Learning Robust Search Strategies Using
a Bandit-Based Approach. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 6657–6665, 2018.

15

CDCL Solvers based on Bounded Exploration and
the Glue Bumping method

Md Solimul Chowdhury
School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
mdsolimc@cs.cmu.edu

Abstract—This document describes 5 CDCL SAT solvers:
kissat mab gb, ekissat mab be-v1, ekissat mab be-v2 and
kissat mab gb be and cadical hack gb which are entering to
the SAT Competition-2022. These solvers are based on the
following 2 ideas: 1) Bounded randomized exploration amid
conflict depression phases and 2) Activity score bumping of
variables that appear in the glue clauses.

I. BOUNDED EXPLORATION AMID A CD PHASE

This approach is based on our observation that search
in Conflict Directed Clause Learning (CDCL) entails clear
patterns of bursts of conflicts followed by longer phases
of conflict depression (CD) [1]. During a CD phase, for a
consecutive number of decisions, a CDCL solver is unable to
generate conflicts, from which the search could learn clauses to
prune the search space. To correct the course of such a search,
we propose to use random exploration to combat conflict
depression. In this approach, when the search enters into a
substantially long CD phase, instead of using the currently
active decision heuristic, we employ a uniform random strat-
egy for selecting decision variables. The goal of this random
exploration is to find conflicts amid a substantially long CD
phase, in which the currently active decision heuristic is unable
to find a conflict. This random selection continues, until the
search finds a conflict or takes a maximum of s > 0 random
steps. We call this approach bounded exploration (BE).

Fig. 1 shows how this approach works.

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

heu heu heu heu heu heu heu heu heu heu heu heu heu rand randrand rand rand heu heu heu

Fig. 1: Assume that a CDCL solver is running a given instance.
This figure shows 20 consecutive decisions taken by that
solver. The top row shows decision indexes which starts at
0 and ends at 19. In the second row, the grey cells depict
decisions with no conflict and green cells depict decisions with
non-zero conflicts. For a decision, the text inside a colored
cell of the bottom row denotes type of decision strategy
(heu: heuristic decision, rand: random decision) used at that
decision. In this search snapshot, a long CD phase starts at the
5th decision. Amid this long CD phase, the search decides to
perform random decisions from decision 13. At decision 16,
with a random decision the search finds a conflict. This results
in the end of the current CD phase.

II. GLUE VARIABLE BUMPING

Let a CDCL SAT solver M is running a given SAT instance
F and the current state of the search is S. We call the variables
that appeared in at least one glue clause up to the current state
S Glue Variables. We design a structure-aware variable score
bumping method named Glue Bumping (GB) [2], based on
the notion of glue centrality (gc) of glue variables. Given a
glue variable vg , glue centrality of vg dynamically measures
the fraction of the glue clauses in which vg appears, until the
current state of the search. Mathematically, the glue centrality
of vg , gc(vg) is defined as follows:

gc(vg)←
gl(vg)

ng

, where ng is the total number of glue clauses generated by
the search so far. gl(vg) is the glue level of vg , a count of
glue clauses in which vg appears, with gl(vg) ≤ ng.

A. The GB Method

The GB method modifies a CDCL SAT solver M by adding
two procedures to it, named Increase Glue Level and Bump
Glue Variable, which are called at different states of the search.
We denote by Mgb the GB extension of the solver M .

Increase Glue Level: Whenever Mgb learns a new glue clause
g, before making an assignment with the first UIP variable that
appears in g, it invokes this procedure. For each variable vg
in g, its glue level, gl(vg) is increased by 1.
Bump Glue Variable: This procedure bumps a glue variable
vg , which has just been unassigned by backtracking. First a
bumping factor (bf) is computed as follows:

bf ← activity(vg) ∗ gc(vg)
, where activity(vg) is the current activity score of the variable
vg and gc(vg) is the glue centrality of vg . Finally, the activity
score of vg , activity(vg) is bumped as follows:

activity(vg)← activity(vg) + bf

III. SOLVERS DESCRIPTION

We have submitted five CDCL SAT solvers to the SAT
Competition-2022, which are based on combinations of the
two approaches described in the previous sections. Our solvers
are implemented on top of the solver kissat mab (winner of

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

16

SAT competition-2022) [3] and CaDiCaL1.4.1 (base solver for
the CaDiCaL hack track) [4]. In the following, we describe our
solvers:

a) kissat gb: This solver implements the GB method
on top of kissat mab. kissat mab employs three branching
heuristics: VSIDS, CHB and VMTF. In kissat mab, the GB
scheme is kept active only when VSIDS and CHB are active.

b) ekissat be v1: The solver ekissat be v1 implements
the BE strategy on top of kissat mab, only when VSIDS and
CHB are active.

c) ekissat be v2: This solver same as ekissat be v1,
except that ekissat be v2 does not perform any exploration,
if a small fraction (10%) of variables remains to be assigned.

d) ekissat be gb: This system implements the GB
method on the top of ekissat be v1.

e) cadical hack gb: This solver implements the GB
method on top of cadical-rel-1.4.1.

REFERENCES

[1] Md Solimul Chowdhury and Martin Müller and Jia You, Guiding CDCL
SAT Search via Random Exploration amid Conflict Depression. In
Proceedings of AAAI-2020:1428-1435.

[2] Md. Solimul Chowdhury, Martin Müller, Jia-Huai You, Exploiting Glue
Clauses to Design Effective CDCL Branching Heuristics. In Proceedings
of CP 2019: 126-143.

[3] Mohamed Sami Cherif, Djamal Habet and Cyril Terrioux. Kissat MAB:
Combining VSIDS and CHB through Multi-Armed Bandit, In Proceed-
ings of SAT Competition 2021:15-16.

[4] CaDiCal 1.4.1, https://github.com/arminbiere/cadical/tree/rel-1.4.1, ac-
cess date: 15-May-2022.

2

17

Kissat-ELS and its friends at the SAT Competition
2022

Fei Geng, Lei Yan and ShuCheng Zhang
TCS Lab, Huawei Technologies, Beijing, China

{gengfei12, david.yan, zhangshucheng}@huawei.com

Abstract—This paper describes our sat solvers are for SAT
Competition 2022. Our solvers based on Kissat with enhanced
local search (Kissat-ELS), including four different version sub-
mitted to SAT Competition 2022. All the four solvers participate
in the Main Track, while the Kissat-ELS-v1 and Kissat-ELS-v2
also participate in the Anniversary Track.

I. INTRODUCTION

Four different versions of our solvers are all based on
Kissat-sc2021-sweep [1], which wins the second place in Main
Track in SAT Competition 2021. Local search procedure in
Kissat is a subroutine of rephase, and the solution of local
search will be saved in decision phases. Improving local
search not only provides help for solving random instances,
but also affects the search tree in stable mode of Kissat.
We experimented with a number of strategies to enhance
local search to improve the solver’s ability to solve satisfiable
instances. The main methods to imporve local search are as
follows:

• Extend the execution time of local search.
• Use Unit Propagation to get a better initial solution for

local search algorithm.
• Import CCAnr [2] algorithm to replace the original local

search algorithm in Kissat.

II. THE EFFECT OF LOCAL SEARCH EFFORT

In order to solve more satisfiable instances by stochastic
local search, it is effective to simply extend the execution
time of local search. We uniformly sampled 360 instances
from the competition benchmarks of the past two decades as
our training benchmark. We experimented with the change
of the number of solved instances as the local search effort
increases and got some interesting experimental conclusions.
In Fig.1, x-axis represents the parameter in Kissat (with - -
walkeffort) which control the execution time of local search,
y-axis represents the number of solved instances, the dark
red and light red areas represent the number of solved SAT
instances by local search and CDCL, respectively. The green
area stands for UNSAT part.

With the increase in local search effort, the local search
solved number increases while the CDCL solved SAT parts
decreases, due to the fact that some instances which should
have been solved by CDCL are replaced by local search.
Unexpectedly, the UNSAT part increases slightly and then
decreases, and the maximum number of UNSAT instances
solved reached at the same time as the total solved number.

Fig. 1. The Effect of Local Search Effort on SAT Solving.

We conjecture that rephase by local search has some positive
effects on solving UNSAT cases. We think that the optimal
parameters are positively correlated with the number of ran-
dom instances in training benchmark, and the relation should
be a unimodal function.

III. UNIT PROPAGATION FOR LOCAL SEARCH
INITIALIZATION

The initial value is significant for local search engine,
different initialization will lead to different search subspaces
for local search. Kissat imports decision phases or takes over
the previous local search result as the initial value. Inspired
by lstech maple [3], we found that unit propagation might
be a more suitable initialization method for local search,
which would cause less conflict and be more closer to the
satisfiable result. During implementation, we randomly pick
an unassigned variable and assign it by decision phase, then
do unit propagation similar to Kissat search mode propagation
without dealing with conflicts until all active variables are
assigned.

IV. KISSAT-ELS-V1 AND KISSAT-ELS-V2

In Kissat-ELS-v1, we set the configuration to:
• - -walkeffort=1000, - -vivifyeffort=1, - -sweep=false
In Kissat-ELS-v2, we implement the unit propagation with-

out dealing with conflict as - -walkup option, and set vivifyef-
fort and sweep to default.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

18

V. KISSAT-ELS-V3 AND KISSAT-ELS-V4

We import the ccnr part from lstech maple [3] as the base
version of CCAnr’s implementation, and adapt the ccnr part
to be compatible with Kissat. Kissat will set some variables
to inactive and fix these variables during searching, so we
use a filter to delete those variables and some clauses which
will be passed to ccnr engine. Different from the original
implementation, we only choose irredundant clauses as clause
database to ccnr algorithm instead of original clauses and some
learnt clauses. We also made some minor modifications, such
as the ccnr reward ratio (the conflicts from ccnr to modify the
VSIDS score in CDCL). The major difference between Kissat-
ELS-v3 and Kissat-ELS-v4 is that the former use the decision
phases as initial values for the local search engine, while the
latter uses the unit propagate initialization described before.

REFERENCES

[1] A. Biere, M. Fleury and M. Heisinger. CADICAL, KISSAT, PARA-
COOBA Entering the SAT Competition 2021. in Proc. of SAT Compe-
tition 2021 - Solver and Benchmark Descriptions.

[2] Cai S, Luo C, Su K. CCAnr: A configuration checking based local search
solver for non-random satisfiability. International Conference on Theory
and Applications of Satisfiability Testing. Springer, Cham, 2015: 1-8.

[3] Zhang X, Cai S, Chen Z. Improving CDCL via Local Search. in Proc.
of SAT Competition 2021 - Solver and Benchmark Descriptions.

19

Combining Hybrid Walking Strategy with
Kissat MAB, CaDiCaL, and LStech-Maple

Jiongzhi Zheng1 Kun He1 Zhuo Chen1 Jianrong Zhou1 Chu-Min Li†2

1School of Computer Science and Technology,
Huazhong University of Science and Technology, China

2MIS, Université de Picardie Jules Verne, France
†Chu-Min Li does not participate in solvers LStech-Maple-FPS and CaDiCaL-HyWalk.

Abstract—This document describes our five SAT solvers,
LStech-Maple-BandSAT, LStech-Maple-FPS, LStech-Maple-
HyWalk, Kissat MAB-HyWalk, and CaDiCaL-HyWalk,
submitted to the SAT Competition 2022. CaDiCaL-HyWalk is
submitted to the hack track, and the others are submitted to
the main track.

I. INTRODUCTION

Recently we propose two kinds of local search algorithms
for MaxSAT problems, called BandMaxSAT [1] and FPS [2].
We propose their two variants for the SAT problem, and
replace the CCAnr algorithm [3] with them in the LStech-
Maple solver [4], which participated in SAT Competition
2021. The resulting solvers are called LStech-Maple-BandSAT
and LStech-Maple-FPS.

Moreover, we propose a Hybrid Walking (HyWalk) strategy
that combines BandSAT, FPS, and some other local search
algorithms with different random walking or say local optimal
escaping strategies, and obtain another solver LStech-Maple-
HyWalk. In LStech-Maple-HyWalk, a decision tree is applied
to help the solver decide which walking strategy can solve the
input instance well.

Finally, we apply a similar hybrid mechanism to
the Kissat MAB [5] and CaDiCaL solvers, and yield
Kissat MAB-HyWalk and CaDiCaL-HyWalk.

II. LSTECH-MAPLE-BANDSAT

BandSAT is a variant of BandMaxSAT [1]. It associates a
multi-armed bandit with all the clauses. Each arm corresponds
to a clause. BandSAT uses the same method as CCAnr to
select the variable to be flipped when the algorithm does
not reach a local optimum (the process before updating the
clause weights in CCAnr). When falling into a local optimum,
BandSAT selects to pull an arm that corresponds to a falsified
clause, which indicates satisfying the clause by flipping the
variable with the highest score in the clause. The bandit model
in BandSAT can help the algorithm select a better search
direction than CCAnr, which randomly selects the clause to
be satisfied when falling into a local optimum. When selecting
the are to be pulled, BandSAT first randomly samples 20 arms
which are all corresponding to falsified clauses, then selects
the arm according to the Upper Confidence Bound of the

sampled arms. We also apply the delayed reward method in
BandMaxSAT to update the estimated values of the arms.

Replacing CCAnr in LStech-Maple with BandSAT results
in LStech-Maple-BandSAT.

III. LSTECH-MAPLE-FPS

The Farsighted Probabilistic Sampling (FPS) [2] strategy
combines the look-ahead strategy with the probabilistic sam-
pling strategy in an effective way. FPS for SAT also applies
the same method as CCAnr when the algorithm does not
reach a local optimum for the CCAnr. When a local optimum
is reached. FPS first randomly samples 10 falsified clauses,
then tries to look-ahead from a random variable of each
sampled clause, to check whether flipping a pair of variables
can improve the current solution. If FPS fails to improve the
current solution by flipping a pair of variables, it will select to
flip the best among the best sampled single variable and the
best sampled pair of variables.

With the help of the look-ahead strategy, FPS can improve
the local optima for the CCAnr, so as to find higher-quality
solutions. While the probabilistic sampling strategy can help
the algorithm improve its efficiency.

Replacing CCAnr in LStech-Maple with FPS results in
LStech-Maple-FPS.

IV. LSTECH-MAPLE-HYWALK

Different walking strategies such as those in BandSAT and
FPS are suitable for different kinds of instances. Therefore, to
help the LStech-Maple solver decide to select an appropriate
walking strategy to explore the solution space, we use a
decision tree that trains on all the instances from the main
tracks of the last three years of SAT Competition. The features
include the number of variables V , the number of clauses C,
the ratio of C to V , the minimum number of clause lengths, the
average number of clause lengths, and the maximum number
of clause lengths.

LStech-Maple-HyWalk contains a total of six walking
strategies. They are CCAnr, BandSAT, FPS, SimpleWalk (first
randomly sample 10 falsified clauses, then randomly sample
5 variables in each sampled clause, finally select the variable
with the highest score), FPS+SimpleWalk (FS, first randomly

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

20

sample clauses and variables as SimpleWalk does, then look-
ahead from the sampled variable with the highest score in
each sampled clause), and BandSAT+FPS (BF, first select the
falsified clause to be satisfied as BandSAT does, then randomly
sample 10 variables in the selected clause to look-ahead).

V. KISSAT MAB-HYWALK AND CADICAL-HYWALK

Kissat MAB-HyWalk and CaDiCaL-HyWalk use a similar
hybrid strategy as LStech-Maple-HyWalk. However, these two
solvers use very simple basic walking strategies. The basic
idea is also very simple, that is, walking is useful for some
instances but not for all the instances. So there are some
instances need not the walking process. Others need to spend
more resources on walking. Therefore, Kissat MAB-HyWalk
combines three methods, i.e., Kissat MAB itself, Kissat MAB
without the walking phase, and Kissat MAB with the rounds
of the walking phase multiplied by 5. CaDiCaL-HyWalk is
the same. CaDiCaL-HyWalk only changes the walk.cpp file
of CaDiCaL 1.4.1.

REFERENCES

[1] J. Zheng, J. Zhou, K. He, “Farsighted Probabilistic Sampling
based Local Search for (Weighted) Partial MaxSAT,” arXiv preprint
arXiv:2108.09988, 2021.

[2] J. Zheng, K. He, J. Zhou, Y. Jin, C. M. Li, F. Manyà, “BandMaxSAT: A
Local Search MaxSAT Solver with Multi-armed Bandit,” IJCAI 2022.

[3] S. Cai, C. Luo, K. Su, “CCAnr: A Configuration Checking Based Local
Search Solver for Non-random Satisfiability,” SAT 2015: 1-8.

[4] X. Zhang, S. Cai, Z. Chen, “Improving CDCL via Local Search,” SAT
COMPETITION 2021, 2021: 42.

[5] M. S. Cherif, D. Habet, C. Terrioux, “Kissat MAB: Combining VSIDS
and CHB through Multi-Armed Bandit,” SAT COMPETITION 2021,
2021: 15.

21

Descriptions for CadicalReorder SAT Solver
Junhua Huang

Xiamen University
Hui-Ling Zhen, Wanqian Luo, Mingxuan Yuan

Noah’s Ark Lab, Huawei, China

Abstract—Here is the brief description for modified CaDiCal
solver which submitted to the cadical hack track, according to
the necessary information for submission.

I. INTRODUCTION

This is the brief description for modified CaDiCal SAT
solver, according to the necessary information for submission.

A. Author Information

There are three main authors for the modifications of SAT
solvers:
(a) Junhua Huang, Xiamen University, China.
(b) Hui-Ling Zhen, Noah’s Ark Lab, Huawei, Hong Kong,

China
(c) Wanqian Luo, Noah’s Ark Lab, Huawei, Hong Kong,

China
(d) Mingxuan Yuan, Noah’s Ark Lab, Huawei, Hong Kong,

China

B. Descriptions for Algorithms

We focus on the different searching strategies and heuristic
algorithms for SAT and UNSAT instances. In this solver,
we have considered the instance structure from clustering
view, based on which we reorder the initial branch queue.
The corresponding reference is given in Refs. [1-2]. This
modification is based on our observations on the structural
characteristics’s effect on CDCL.

We also have tried different scoring method in UNSAT
instances, such as bandit score and bump score in branching
for literals. Furthermore, we have a more aggressive conflict
record method for restart, backtrack and propagate. However,
considering the limit from the characteristics numbers, this
performance is unstable and we will not provide these codes
and descriptions here.

REFERENCES

[1] Hireche, C., Drias, H. and Moulai, H., 2020. Grid based clustering for
satisfiability solving. Applied Soft Computing, 88, p.106069.

[2] Boltenhagen, Mathilde, Thomas Chatain, and Josep Carmona. ”Optimized
SAT encoding of conformance checking artefacts.” Computing 103.1
(2021): 29-50.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

22

MapleLCMDistChronoBT-DL-v3, the duplicate
learnts heuristic-aided solver at the SAT

Competition 2022
Stepan Kochemazov, Oleg Zaikin, Victor Kondratiev and Alexander Semenov

Email: veinamond@gmail.com, zaikin.icc@gmail.com, vikseko@gmail.com, axelvonemes@gmail.com

Abstract—This document describes the
MapleLCMDistChronoBT-DL-v3 solver which is based on the
SAT Competition 2018 winner, the MapleLCMDistChronoBT
solver, augmented with duplicate learnts heuristic.

I. DUPLICATE LEARNTS

During the CDCL inference, some learnt clauses can be
generated multiple times. It is reasonable to assume that they
deserve special attention. In particular, the simple rule for
their processing can look as follows: if a learnt clause was
repeated at least k times (k ≥ 2) during the derivation,
then this clause should be permanently added to the conflict
database. It can be naturally implemented for solvers based
on COMiniSatPS [1], since they store learnt clauses in three
tiers: Core, Tier2 and Local, where the learnts in Core are not
subject for reduceDB-like procedures. Thus we basically can
put duplicate learnts into Core when they satisfy the conditions
outlined below.

In the submitted solver we track the appearances of dupli-
cate learnts using a hashtable-like data structure and process
them based on several parameters. The hashtable is imple-
mented on top of C++ 11 unordered_map associative con-
tainer. The goal of parameters is to ensure that the hashtable
does not eat too much memory, that the learnt clauses are
filtered based on their LBD, and that the learnts repeated a
prespecified number of times are added to Tier2/Core.

• lbd-limit – only learnt clauses with lbd ≤
lbd-limit are screened for duplicates.

• min-dup-app – learnt clauses that repeated
min-dup-app times are put into Tier2, and the
ones repeated min-dup-app+1 times – to Core tier.

• dupdb-init – the initial maximal number of entries in
the duplicate learnts hashtable.

The duplicates database is purged as soon as its size ex-
ceeds dupdb-init. Only the entries corresponding to learnt
clauses repeated at least min-dup-app times are preserved.
With each purge, the value of dupdb-init is increased by
10%.

Additionally, we limit core_lbd_cut parameter of the
solver to 2 since duplicate learnts can provide a lot of
additional clauses to store in Core.

II. MAPLELCMDISTCHRONOBT-DL-V3 [2]
MapleLCMDistChronoBT-DL-v3 is based

on the SAT Competition 2018 main track winner,

MapleLCMDistChronoBT [3], which in turn is based on
Maple_LCM_Dist [4], the successor of MapleCOMSPS
[5].

The solver employs lbd-limit=12, min-dup-app=3
(e.g. only learnts repeated 4 times are added to Core), and
dupdb-init=500000. It also uses a deterministic LRB-
VSIDS switching strategy: it starts with LRB [5] and switches
between LRB and VSIDS [6] each time the number of
propagations since the last switch exceeds a specific value.
This value starts at 30000000 propagations and is increased
by 10% with each switch.

This version of the solver is the same as in SAT Competition
2020 (and SAT Race 2019 with several small typos fixed).

REFERENCES

[1] C. Oh, “Between SAT and UNSAT: The fundamental difference in cdcl
SAT,” in SAT, ser. LNCS, vol. 9340, 2015, pp. 307–323.

[2] S. Kochemazov, O. Zaikin, A. Semenov, and V. Kondratiev, “Speeding
up CDCL inference with duplicate learnt clauses,” in ECAI, 2020, pp.
339–346.

[3] A. Nadel and V. Ryvchin, “Chronological backtracking,” in SAT, ser.
LNCS, vol. 10929, 2018, pp. 111–121.

[4] M. Luo, C. Li, F. Xiao, F. Manyà, and Z. Lü, “An effective learnt clause
minimization approach for CDCL SAT solvers,” in IJCAI, 2017, pp. 703–
711.

[5] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, “Learning rate based
branching heuristic for SAT solvers,” in SAT, ser. LNCS, vol. 9710, 2016,
pp. 123–140.

[6] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient SAT solver,” in Proceedings of the 38th
Annual Design Automation Conference, ser. DAC ’01, 2001, pp. 530–535.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

23

HKIS, HCAD and PAKIS in the SAT Competition
2022

Rodrigue Konan Tchinda1,2, Clémentin Tayou Djamegni1
1University of Dschang, Dschang, Cameroon
2University of Bamenda, Bamenda, Cameroon
{rodriguekonanktr, dtayou}@gmail.com

Abstract—This document describes the sequential solvers
HKIS, HCAD and the parallel solver PAKIS submitted to the
SAT Competition 2022.

I. HCAD AND HKIS

The solvers HKIS and HCAD [1] are “hacks” of KISSAT
and CADICAL [2], [3] respectively that integrate the PSIDS
heuristic [4] for choosing the polarities of selected branching
variables.

We submitted two versions of the HCAD solver to the
SC22, namely HCAD V1 and HCAD V2. The source code
of HCAD V1 is the same as the one submitted to the SC21
but we changed the configuration to the following:

• psids where the options are: --psids=1
--target=2 --walk=false and
--chrono=true;

As for HCAD V2, it is built on top of version 1.4.1 of
CADICAL. It was submitted to the CADICAL Hack Track
of the SC22 with the following configuration:

• default where the options are:
--target=0 --walk=false;

The source code of HKIS is also identical to the one
submitted to SC21, but for this year we used the following
three configurations:

• psids where the options are: --unsat and
--psids=true;

• sat where the options are --sat and
--walkinitially=true;

• unsat where the options are --target=1
--walkinitially=true and --chrono=true.

II. PAKIS

We submitted two versions of the parallel solver PAKIS to
the SAT Competition 2022. The first version is identical to the
one submitted to the SC 2021 [1] with the only difference that
the number of threads has been reduced from 24 to 12. The
second version was obtained by replacing the worker solver
KISSAT of PAKIS with the KISSAT MAB [5] solver, winner of
the sequential track of SC21. For the latter, we set the number
of threads to 24.

III. ACKNOWLEDGMENTS

We would like to thank the developers of PAINLESS [6],
KISSAT, CADICAL [2] and Kissat MAB [5].

REFERENCES

[1] R. K. Tchinda and C. T. Djamegni, “HKIS, HCAD, PAKIS and PAIN-
LESS ExMapleLCMDistChronoBT in the SC21,” SAT COMPETITION
2021, p. 26, 2021.

[2] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020,” in Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, ser. Department of Computer Science Report Series B,
T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda,
Eds., vol. B-2020-1. University of Helsinki, 2020, pp. 51–53.

[3] A. Biere, “CaDiCaL at the SAT Race 2019,” in Proc. of SAT Race
2019 – Solver and Benchmark Descriptions, ser. Department of Computer
Science Report Series B, M. Heule, M. Järvisalo, and M. Suda, Eds., vol.
B-2019-1. University of Helsinki, 2019, pp. 8–9.

[4] R. K. Tchinda and C. T. Djamegni, “PADC MapleLCMDistChronoBT,
PADC Maple LCM Dist and PSIDS MapleLCMDistChronoBT in the
SR19,” SAT RACE 2019, p. 33.

[5] M. S. Cherif, D. Habet, and C. Terrioux, “Kissat MAB: Combining
VSIDS and CHB through Multi-Armed Bandit,” SAT COMPETITION
2021, p. 15, 2021.

[6] L. Le Frioux, S. Baarir, J. Sopena, and F. Kordon, “Painless: a framework
for parallel sat solving,” in International Conference on Theory and
Applications of Satisfiability Testing. Springer, 2017, pp. 233–250.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

24

MergeSat, Merge-Mallob and
Mallob-MergeCadLing

Norbert Manthey
nmanthey@conp-solutions.com

Dresden, Germany

Abstract—The sequential SAT solver MERGESAT is a fork
of the 2018 SAT competition winner, and adds known as
well as novel improvements. MERGESAT is setup to simplify
merging solver contributions into one solver, to motivate more
collaboration among solver developers. MERGESAT has been
integrated into the parallel HORDESAT, which in turn is used
in MALLOB. Additionally, MERGESAT offers a deterministic
parallel mode, with the ability to generate unsatisfiability proofs.

I. INTRODUCTION

The CDCL solver MERGESAT is based on the competition
winner of 2018, MAPLE LCM DIST CHRONOBT [15], and
adds several known techniques, fixes, and some novel ideas
around reasoning as well as parallel solving. MERGESAT uses
git to combine changes, and comes with continuous integration
to simplify extending the solver further.

II. DEVELOPMENT TENETS

When given a sequential compute resource, the CDCL
algorithm [16] is assumed to be the most efficient way to solve
SAT. To avoid duplicating implementation effort, MERGESAT
is setup to easily incorporate modifications to other solvers.
This setup allows to keep up with the state-of-the-art and
research. Automated testing as well as extended internal
checks and proof validation help to spot merge issues early.

For parallel computing resources, portfolio solvers are
assumed to be limited with respect to scalability in proof
generation [11]. MERGESAT’s parallel variant allows to use
search space partitioning in an experimental mode. Partitioning
is currently handled via assumption literals, similarly to the
cube-and-conquer [6] approach. The key difference is that
MERGESAT dynamically and recursively re-partitions the
search space again if compute resources become available
again [8], [9]. The heuristic is to keep the sequential algorithm
running as long as possible on the largest possible portion
of the search space. Thanks to using assumption literals, the
used base-solver does not need to implement dependency-
tracking [12], as done in PCASSO [10]. Learnt clauses can be
shared across all solver instances, and unsatisfiability proofs
can be generated as done in parallel portfolio solvers [7].

MERGESAT is not tuned for a specific application or
benchmark. Solver additions try to stay as close to the original
behavior as possible, and can be enabled by configuration.
Behavior-changing modifications are automatically detected.

Most algorithms in MERGESAT can be configured. The
parameter specification can be printed to a file, to be used

by tools to automatically configure the solver. Furthermore,
when using MERGESAT as a library, the parameters can be
configured – and tuned – via environment variables.

To improve solver maintenance, the solver is implemented
in a deterministic way. Algorithms are limited or switched
based on step counters instead of measured run time, as the
later is highly platform specific. The parallel execution is based
on barriers similar to MANYSAT [4], to obtain a deterministic
parallel solver execution. Cross-platform determinism is work
in progress: MERGESAT already replaces some of the math-
library functions like exp, to become independent of the
implementation differences for different platforms.

While CDCL, as well as variable elimination [2], use res-
olution as the main reasoning, other simplification techniques
exist that do not follow the obvious resolution pattern. Learnt
Clause Minimization [13] is such an example. Similarly,
MERGESAT implements look-ahead [5], which can be used
to create search decisions, as well as to partition the formula.
The implemented look-ahead uses double-look ahead for the
second assessed polarity, as ternary clauses are collected after
propagating the first polarity.

The sequential and parallel MERGESAT can emit unsatis-
fiability proofs in the DRAT format [17]. In both modes, the
generation of the proof can be verified during runtime.

The sequential solver supports incremental solving with
assumption literals. Incremental solving is not yet compatible
with the search space partitioning, so that the parallel solver
falls back to portfolio mode with sharing.

III. IMPROVEMENTS SINCE COMPETITION 2021 VERSION

Besides the extension to deterministic parallel solving with
clause sharing, proof generation and search space partitioning,
MERGESAT received some updates in the used heuristics.

The solver CADICAL initially assigns the free variables in
order. MERGESAT assigned the smallest free variable first,
and the greatest variable next; and then continue in reverse
order – as also done in MINISAT 2.2 or GLUCOSE 2.2. This
order is caused by the initialization of variable activities to the
same value, in combination with the implementation of the
used ordering data structure. To stay in order, the activities of
the variables are not assigned the same value, but instead are
assigned the value 1000

x for each variable x.
To get access beyond the usual search and conflict analysis

with learnt clause minimization, necessary assignments [14]
based on the literals of binary clauses can be detected during

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

25

decisions on the top level. Heuristically, this search happens
for every fourth decision on the top-level.

Changes to the solver are tracked in a CHANGELOG file.
Updates to this file are enforced via automated checks.

IV. SUBMITTED SOLVERS

A. Sequential Solvers

MERGESAT is submitted in three different configurations.
1) Default Configuration (4.0-rc1): This configuration uses

the setup as described above.
2) No Platform (4.0-rc2): This configuration differs to (4.0-

rc1) in the fact that the systems math library implementation
is used for the functions exp and log.

3) No SLS (4.0-rc3): This configuration differs to (4.0-rc1)
in the fact that the CCNR SLS engine is not used during search.
However, rephasing [1] is still used.

B. Parallel Solvers

The more recent variant of MERGESAT has been submitted
in a stand-alone fashion as determinism portfolio solver with
sharing. Furthermore, variants of HORDESAT and MALLOB
have been submitted, using improvements from MERGESAT,
as well as more recent solvers that also use insights from
MERGESAT.

The docker image used for the parallel MERGESAT is based
on Fedora 36. This version already uses glibc 2.35, which
contains the modifications to memory allocation to easily use
huge page memory management, which has been shown to
improve solver performance [3]. Furthermore, prefetching is
disabled in the solver backends for parallel solvers.

1) Merge-Mallob: For the cloud-track, the solver MALLOB,
which is based on HORDESAT, has been extended to use the
latest variant of MERGESAT. In this configuration, MERGE-
SAT is the only used solving engine.

2) Mallob-MergeCadLing: All other backend solvers
(CADICAL, LINGELING, YALSAT) have been bumped to their
most recent version. To simplify future updates, these solvers
are added via git submodules. Prefetching is not used in the
parallel mode, to not overload load the memory subsystem
with avoidable memory accesses. The used CADICAL back-
end furthermore received the watch-sat modification from the
hack-track of the SAT competition 2021.

V. AVAILABILITY

The source of MERGESAT is publicly available under
the MIT license at https://github.com/conp-solutions/mergesat.
The version with the git tag “sat-comp-2022” is used for
all MERGESAT-related submissions. The submitted starexec
package can be reproduced by running “./scripts/make-
starexec.sh” on this commit.

MERGE-HORDESAT is available under the MIT license at
https://github.com/conp-solutions/hordesat. MERGE-MALLOB
is available under the LGPL license at https://github.com/
conp-solutions/mallob, with the tag “sat-comp-2022”.

The parallel variant of MERGESAT has a few open issues:
tuning the default configuration, improving handling of special

cases like lazily initializing and synchronizing parallel solvers
during incremental solving, as well as combining incremental
solving with search space partitioning and proof generation.

ACKNOWLEDGMENT

The author would like to thank the developers of all prede-
cessors of MERGESAT, and all the authors who contributed
the modifications that have been integrated. Furthermore, we
thank the ZIH of TU Dresden for making compute resources
available that have been used to develop earlier versions
of MERGESAT. Adhemerval Zanella made transparent huge
pages easily accessible via his modifications to glibc.

REFERENCES

[1] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020,” in Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, ser. Department of Computer Science Report Series B,
T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda,
Eds., vol. B-2020-1. University of Helsinki, 2020, pp. 51–53.

[2] N. Eén and A. Biere, “Effective preprocessing in SAT through variable
and clause elimination,” in SAT 2005, ser. LNCS, F. Bacchus and
T. Walsh, Eds., vol. 3569. Heidelberg: Springer, 2005, pp. 61–75.

[3] J. K. Fichte, N. Manthey, J. Stecklina, and A. Schidler, “Towards faster
reasoners by using transparent huge pages,” 2020. [Online]. Available:
https://arxiv.org/abs/2004.14378

[4] Y. Hamadi, S. Jabbour, and L. Sais, “ManySAT: a parallel SAT solver,”
JSAT, vol. 6, no. 4, pp. 245–262, 2009.

[5] M. Heule and H. van Maaren, “Look-ahead based SAT solvers,” in
Handbook of Satisfiability, A. Biere, M. Heule, H. van Maaren, and
T. Walsh, Eds. Amsterdam: IOS Press, 2009, pp. 155–184.

[6] M. J. H. Heule, O. Kullmann, S. Wieringa, and A. Biere, “Cube
and conquer: Guiding cdcl sat solvers by lookaheads,” in Proceedings
of the 7th International Haifa Verification Conference on Hardware
and Software: Verification and Testing, ser. HVC’11. Berlin,
Heidelberg: Springer-Verlag, 2011, p. 50–65. [Online]. Available:
https://doi.org/10.1007/978-3-642-34188-5 8

[7] M. J. H. Heule, N. Manthey, and T. Philipp, “Validating unsatisfiability
results from clause sharing parallel sat solvers,” 2014, submitted.

[8] A. Hyvärinen, T. Junttila, and I. Niemelä, “A distribution method for
solving SAT in grids,” in SAT 2006, ser. LNCS, A. Biere and C. P.
Gomes, Eds., vol. 4121. Springer, 2006, pp. 430–435.

[9] A. E. Hyvärinen and N. Manthey, “Designing scalable parallel SAT
solvers,” in Theory and Applications of Satisfiability Testing – SAT 2012,
ser. Lecture Notes in Computer Science, A. Cimatti and R. Sebastiani,
Eds., vol. 7317. Springer Berlin Heidelberg, 2012, pp. 214–227.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-31612-8 17

[10] A. Irfan, D. Lanti, and N. Manthey, “PCASSO – a parallel cooperative
SAT solver,” 2014.

[11] G. Katsirelos, A. Sabharwal, H. Samulowitz, and L. Simon, “Resolution
and parallelizability: Barriers to the efficient parallelization of SAT
solvers,” in Proceedings of the Twenty-Seventh AAAI Conference
on Artificial Intelligence, July 14-18, 2013, Bellevue, Washington,
USA, M. desJardins and M. L. Littman, Eds. AAAI Press, 2013.
[Online]. Available: http://www.aaai.org/ocs/index.php/AAAI/AAAI13/
paper/view/6421

[12] D. Lanti and N. Manthey, “Sharing information in parallel search
with search space partitioning,” in Proceedings of the 7th International
Conference on Learning and Intelligent Optimization (LION 7), ser.
LNCS, G. Nicosia and P. Pardalos, Eds., vol. 7997, 2013.

[13] M. Luo, C.-M. Li, F. Xiao, F. Manyà, and Z. Lü, “An effective learnt
clause minimization approach for cdcl sat solvers,” in Proceedings
of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI-17, 2017, pp. 703–711. [Online]. Available:
https://doi.org/10.24963/ijcai.2017/98

[14] I. Lynce and J. P. Marques-Silva, “Probing-based preprocessing tech-
niques for propositional satisfiability,” in ICTAI 2003. IEEE Computer
Society, 2003, pp. 105–110.

26

[15] V. Ryvchin and A. Nadel, “Maple LCM Dist ChronoBT: Featuring
Chronological Backtracking,” in Proceedings of SAT Competition 2018,
2018. [Online]. Available: http://hdl.handle.net/10138/237063

[16] J. P. M. Silva and K. A. Sakallah, “GRASP - a new search algorithm for
satisfiability,” in ICCAD 1996. Washington: IEEE Computer Society,
1996, pp. 220–227.

[17] N. Wetzler, M. Heule, and W. A. H. Jr., “Drat-trim: Efficient checking
and trimming using expressive clausal proof,” in SAT, 2014, accepted.

27

Watch Sat and LTO for CaDiCaL and Kissat
Norbert Manthey

nmanthey@conp-solutions.com
Dresden, Germany

Abstract—When reading the source code of the solver CAD-
ICAL, many differences to solvers based on MINISAT 2.2 or
GLUCOSE 2.2 can be found. Porting an algorithm detail in
unit propagation from CADICAL to MERGESAT resulted in
a performance degradation. In MERGESAT, when watching a
satisfied literal during unit propagation, the clause is moved to
the watch list of that literal. In 2021, KISSAT and CADICAL
just update the blocking literal of the clause and keep the clause
in the current watch list. MERGESAT’s behavior was ported to
CADICAL and KISSAT. Furthermore, link-time-optimization, as
used in RISS already, is enabled for the two solvers.

I. UNIT PROPAGATION IMPROVEMENTS

SAT solvers are used in many fields. Hence, some solvers
are heavily tuned to perform well for target applications. Other
research focusses on improving the overall solver performance
in general. Many heuristic and algorithmic extensions to the
core algorithm have been proposed [1]. The overall runtime
distributions among the algorithm components still did not
change significantly: unit propagation still takes a vast majority
of the overall runtime [6], [3].

A. Watching Clauses in Propagation

The modification presented in this description alters an
implementation detail of unit propagation that is different in
CADICAL when being compared to other MINISAT 2.2-based
SAT solvers that participate in competitive events. The two
watched literals scheme has been implemented first in [7]. The
next major improvement to skip processing clauses early was
to move literals, so called blocking literals, from the clause
into the watch list data structure. MINISAT 2.2 2.1 [2] started
to use a blocking literal. When propagating a clause, first
the truth value of the blocking literal is checked. In case the
blocking literal is satisfied, the related clause is known to be
satisfied. Therefore, the clause does not have to be processed
further. This technique helps to improve the performance of
SAT solvers [6].

In MINISAT 2.2, the blocking literal of a clause is typically
the other watched literal. However, any other literal of the
clause could be chosen.

B. How to Handle Satisfied Clauses

When a blocking literal is not satisfied, the clause has to be
processed. During this process, each clause of the watch list
for the current literal has to be iterated. For each clause, the
truth value of all literals has to be checked, in case we find a
conflict clause or unit clauses that force the extension of the
current truth assignment. For satisfied clauses, we only need
to process the literals until we find a satisfied clauses.

One difference between CADICAL and MINISAT 2.2 based
solvers is the way how they treat these satisfied clauses. MIN-
ISAT 2.2 based solvers watch the satisfied literal. CADICAL
skip updating watch lists. Instead, CADICAL implements
further extensions, like memorizing the literal in a clause that
was tested when last processing the clause [4].

a) Always Watching the Satisfied Literal: When a satis-
fied literal is detected in a clause during propagating a literal,
the clause is removed from the current watch list. As a next
step, solvers append the clauses to the watch list of the satisfied
literal. Both operations are constant time, but require accessing
the other watch list, which can lead to a cache miss [6]
and TLB miss [3]. The watch list of the other literal can be
higher in the search tree, so that the clause will be touched
less frequent in the remainder of the search. Restarts might
reduce the saving, on the other hand solver today use partial
restarts [9], chronological backtracking [8] as well as trail
saving [5]. All these technique give this saving back partially.

b) Just Update the Blocking Literal: As an alternative,
CADICAL keep watching the current literal, which is now
falsified, but updates the blocking literal to the satisfied literal.
While this breaks the assumption that falsified literals are only
watched for conflict clauses or unit clauses, we still know that
the clause is satisfied. Hence, breaking this assumption does
not have consequences. The positive effect is that the clause
does not have to be removed from the current watch list. This
results in no cache miss, nor a TLB miss. However, when the
search progresses, after backtracking, the same clause might
need to be processed again. In case the satisfied literal is
still satisfied, only the blocking literal has to be processed.
Otherwise, backtracking also removed the assignment for the
blocking literal, so that the whole clause needs to be processed
again.

c) Watching the Satisfied Literal in CADICAL and
KISSAT: Preliminary testing with MERGESAT when just up-
dating the blocking literal of a clause resulted in a performance
degradation. Hence, removing this technique for CADICAL
might result in a performance improvement. The solver CAD-
ICAL-WATCH-SAT and KISSAT-WATCH-SAT implements this
modification.

Not processing a satisfied clause during propagation soon
again can result in a different order of propagated literals,
as well as different conflicts, and consequently in different
heuristic updates and many different follow-up search steps
of the solver. Hence, performance differences can not only be
attributed to lower or higher compute resource utilization.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

28

II. GENERIC IMPROVEMENTS

Besides modifying the algorithm directly, other parameters
of the environment can be influenced as well. Helping the CPU
to access likely-to-be-accessed memory early with prefetch-
ing [6], as well as using (transparent) huge pages to reduce
the paging overhead of a program [3] have been discussed
already. Another area to investigate is compiler parameters.
By default, compilers optimize code per compilation unit,
which usually translates to source files. Optimizations across
source files, so called link time optimization (LTO), has to be
enabled explicitly. Besides spotting programming errors during
compile time, LTO also allows to improve the performance of
a solver slightly. LTO can be enabled by adding -flto to the
compiler invocation.

This compile time flag has been added to the build files for
both KISSAT and CADICAL.

III. AVAILABILITY

The source of the modified CADICAL is publicly
available at https://github.com/conp-solutions/cadical/tree/
watch-sat-flto. The used version of the tool is “rel-1.4.1-4-
g8de178e”. This solver has been submitted to the CADICAL
hack track.

The source of the modified KISSAT is publicly
available at https://github.com/conp-solutions/kissat/tree/
SC2022-watchsat-flto. The used version of the tool is
“sc2021-sweep-9-gba4bc9e”.

REFERENCES

[1] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds., Handbook of
Satisfiability. Amsterdam: IOS Press, 2009.

[2] N. Eén and N. Sörensson, “An extensible SAT-solver,” in SAT 2003, ser.
LNCS, E. Giunchiglia and A. Tacchella, Eds., vol. 2919. Heidelberg:
Springer, 2004, pp. 502–518.

[3] J. K. Fichte, N. Manthey, J. Stecklina, and A. Schidler, “Towards faster
reasoners by using transparent huge pages,” in Principles and Practice of
Constraint Programming, H. Simonis, Ed. Cham: Springer International
Publishing, 2020, pp. 304–322.

[4] I. P. Gent, “Optimal implementation of watched literals and more general
techniques,” J. Artif. Intell. Res., vol. 48, pp. 231–251, 2013. [Online].
Available: https://doi.org/10.1613/jair.4016

[5] R. Hickey and F. Bacchus, “Trail saving on backtrack,” in Theory and
Applications of Satisfiability Testing – SAT 2020, L. Pulina and M. Seidl,
Eds. Cham: Springer International Publishing, 2020, pp. 46–61.

[6] S. Hölldobler, N. Manthey, and A. Saptawijaya, “Improving resource-
unaware SAT solvers,” ser. LNCS, C. G. Fermüller and A. Voronkov,
Eds., vol. 6397. Heidelberg: Springer, 2010, pp. 519–534.

[7] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient SAT solver,” in DAC 2001. New York:
ACM, 2001, pp. 530–535.

[8] A. Nadel and V. Ryvchin, “Chronological backtracking,” in Theory and
Applications of Satisfiability Testing – SAT 2018, O. Beyersdorff and
C. M. Wintersteiger, Eds. Cham: Springer International Publishing, 2018,
pp. 111–121.

[9] P. van der Tak, A. Ramos, and M. Heule, “Reusing the assignment trail
in cdcl solvers,” JSAT, vol. 7, no. 4, pp. 133–138, 2011.

29

SEQFROST at the SAT Race 2022
Muhammad Osama and Anton Wijs

Department of Mathematics and Computer Science
Eindhoven University of Technology, Eindhoven, The Netherlands

{o.m.m.muhammad, a.j.wijs}@tue.nl

I. INTRODUCTION

This paper presents a brief description of our solver SE-
QFROST which stands for Sequential Formal ReasOning
about SaTisfiability in 3 different configurations. SEQFROST
is a new solver mostly rewritten from scratch based on our
last year submission [1] with efficient data structures and
many code optimizations. This year, we observed a large
amount of time is spent on function calls in Boolean Constraint
Propagation (BCP) and data sorting especially in Multiple-
Decision Making (MDM) and inprocessing. Thus, we resorted
to inlined code and pointer prefetching in BCP and replaced
the standard sort procedure with faster modern alternatives,
e.g., pdqsort. Further, we augment the Multi-Arm Bandit
(MAB) rewarding scheme as implemented in the last year
winner KISSAT-MAB to MDM strategy [2], and implement
functional dependency extraction to enhance the effectiveness
of variable elimination. Finally, we extend our elimination
method eager redundancy elimination (ERE) [1], [3] with
clause strengthening to remove redundant literals.

II. DECISION MAKING

The decision-making step in SEQFROST switches periodi-
cally from the standard single-decision procedure as originally
introduced in CDCL search to our MDM procedure previously
presented in [2]. Both single and multiple decisions are
chosen according to VSIDS, VMTF, and CHB [4] branching
heuristics. This year, we add the latter to our solver decision
heuristics to alleviate the quality of the picked decisions in
MDM. SEQFROST decides whether to use VSIDS or CHB
based on MAB restarts [5]. The decision phases of multiple
decisions are still improved via local search but only once at
the initial MDM call.

III. VARIABLE ELIMINATION

In gate-equivalence reasoning, we substitute eliminated vari-
ables with deduced logical equivalent expressions. Combining
gate equivalence reasoning with the resolution rule tends to
result in smaller formulas compared to only applying the res-
olution rule [1], [3], [6]–[9]. Let Gℓ be the gate clauses having
ℓ as the gate output and Hℓ the non-gate clauses, i.e., clauses
not contributing to the gate itself. For regular gates (e.g. AND),
substitution can be performed by resolving non-gate with gate
clauses as follows: Rx = {{Gx ⊗ H¬x}, {G¬x ⊗ Hx}},
omitting the tautological and the redundant parts {Gx⊗G¬x}
and {Hx ⊗H¬x}, respectively [6].

In this submission, we focus on finding definitions for
irregular gates by checking the unsatisfiability of the co-factors
formula {Sx|¬x ∪ S¬x|x}, that is, the formula obtained by
removing all occurrences of x from Sx and ¬x from S¬x.
In [10], a BDD-based approach is used to solve the co-
factors. In this work, we replace the BDD structure with a
function table (bit-vector) encoding the clausal core of the co-
factors. The clausal core is mapped back to the original gate
clauses Gx and G¬x by adding back x and ¬x, respectively.
Then, the set of resolvents Rx = Sx ⊗ S¬x is reduced to
{{Gx ⊗ G¬x}, {Gx ⊗ H¬x}, {G¬x ⊗ Hx}}, dropping the
redundant part {Hx ⊗H¬x}. In contrast to gate substitution,
the resolvents {Gx ⊗G¬x} are not necessarily tautological.

IV. EAGER REDUNDANCY ELIMINATION

ERE was designed originally to target and remove redundant
equivalences after a resolution step. It repeats the following
until a fixpoint has been reached: for a given formula S and
clauses C1 ∈ S, C2 ∈ S with x ∈ C1 and x̄ ∈ C2 for
some variable x, if there exists a clause C ∈ S for which
C ≡ C1 ⊗x C2, then let S := S \ {C} iff (C is learnt ∨
(C1 is original∧C2 is original)). The clause C in this case
is called a redundancy and can be removed without altering the
original satisfiability. In addition to the redundancies removal,
we observed that if the resolvent C1⊗xC2 is not equivalent to
any clause, it can still subsume many others in S. However, to
preserve correctness, subsumed clauses are only strengthened
via the generated resolvents. Suppose that C = (C ′ ∪ C ′′).
Extended-ERE (i.e. as we call it in this submission) may
strengthen C by removing the redundant literals C ′ (resp. C ′′)
if C ′′ = C1 ⊗x C2 (resp. C ′ = C1 ⊗x C2).

V. CODE OPTIMIZATIONS

As mention earlier in the introduction section, all pointers
of vector-type variables are prefetched to save the time spent
in calling the overloaded indexing operator []. Additionally,
all functions repeatedly called in unit propagation and conflict
analysis are replaced with macros as inlining is not always
guaranteed by the compiler. Lastly, the bytes generated by
DRAT proof are now stored in a 1-MB buffer. Once, the
buffer is full, the data is written to the output file via a single
call to fwrite (i.e. writes data in burst mode). Compared to
previous submissions and other solvers, putc_unlock was
being called to write on disk byte by byte which, of course,
adds unnessary overhead to the proof generation.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

30

VI. SUBMISSIONS

The solver instance SEQFROST comprises all configu-
rations described in the previous sections, in which MDM
with local search, CHB decision heuristic, and all simplifi-
cations are enabled with Extended ERE to strengthen orig-
inal clauses only (e.g. the option redundancyextend=1
is set). The second configuration SEQFROST-ERE-ALL ex-
tends ERE with both original and learnt clause strength-
ening (e.g. redundancyextend=2). The third configura-
tion SEQFROST-NO-EXTEND disables Extended ERE (e.g.
redundancyextend=0). The initial settings of the SE-
QFROST have been tuned and tested on the DAS-5 clus-
ter [11] and the Dutch national supercomputer SNELLIUS1.

REFERENCES

[1] M. Osama and A. Wijs, “ParaFROST at the SAT Race 2021,”
in Proc. of SC (2021), ser. Report Series B, vol. B-2021-
1. University of Helsinki, 2021, pp. 32–34. [Online]. Available:
http://hdl.handle.net/10138/333647

[2] ——, “Multiple Decision Making in Conflict-Driven Clause Learning,”
in Proc. of ICTAI (Nov. 2020), Baltimore, USA. IEEE, 2020, pp. 161–
169.

[3] M. Osama, A. Wijs, and A. Biere, “SAT Solving with GPU Accelerated
Inprocessing,” in Proc. of TACAS (Mar. 2021), Luxembourg, ser. LNCS,
vol. 12651. Springer, 2021, pp. 133–151.

[4] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, “Exponential
recency weighted average branching heuristic for sat solvers,” in Pro-
ceedings of the Thirtieth AAAI Conference on Artificial Intelligence, ser.
AAAI’16. AAAI Press, 2016, p. 3434–3440.

[5] M. S. Cherif, D. Habet, and C. Terrioux, “Combining VSIDS and
CHB Using Restarts in SAT,” in 27th International Conference on
Principles and Practice of Constraint Programming (CP 2021), ser.
Leibniz International Proceedings in Informatics (LIPIcs), L. D. Michel,
Ed., vol. 210. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021, pp. 20:1–20:19.

[6] M. Järvisalo, M. Heule, and A. Biere, “Inprocessing Rules,” in Proc. of
IJCAR (Jun. 2012), Manchester, UK, ser. LNCS, vol. 7364. Springer,
2012, pp. 355–370.

[7] M. Osama and A. Wijs, “GPU Acceleration of Bounded Model Checking
with ParaFROST,” in Proc. of CAV (Jul. 2021), USA, ser. LNCS, vol.
12760. Springer, 2021, pp. 447–460.

[8] ——, “Parallel SAT Simplification on GPU Architectures,” in Proc. of
TACAS (Apr. 2019), Prague, Czech Republic, ser. LNCS, vol. 11427.
Springer, 2019, pp. 21–40.

[9] ——, “SIGmA: GPU Accelerated Simplification of SAT Formulas,” in
Proc. of IFM (Dec. 2019), Bergen, Norway, ser. LNCS, vol. 11918.
Springer, 2019, pp. 514–522.

[10] A. Biere, “Lingeling, Plingeling and Treengeling Entering the Sat
Competition 2013,” in Proc. of SC (2013), ser. Report Series B,
vol. B-2013-1. University of Helsinki, 2013, pp. 51–52. [Online].
Available: http://hdl.handle.net/10138/40026

[11] H. E. Bal, D. H. J. Epema, C. de Laat, R. van Nieuwpoort, J. W. Romein,
F. J. Seinstra, C. Snoek, and H. A. G. Wijshoff, “A Medium-Scale
Distributed System for Computer Science Research: Infrastructure for
the Long Term,” Computer, vol. 49, no. 5, pp. 54–63, 2016.

1This work was carried out on the Dutch national e-infrastructure with the
support of SURF cooperative.

31

SLIME SAT Solver
1st Oscar Riveros
Santiago, Chile

oscar.riveros@gmail.com

Abstract—A ”on the fly” version of HESS algorithm for Multi-
armed bandit style selection of rephasing, dual search algorithm,
full remove of randomness on sequential and cloud version, based
on SLIME sc2021 [1].

I. INTRODUCTION

We create an on the fly version of HESS [1] algorithm,
this allow an optimization of the rephasing states. We create
a dual search phase of the solver, one more simple and other
more complex, this are called according if the VSIDS heuristic
is running. The DISTANCE heuristic is now parametric, on
the experiments, DISTANCE work well with cryptographic
instances, but not with generics. For the cloud version the
initial polarities are different for every node, on deterministic
way, also the rank of the node is influencing on the execution.
On this version is added an optional parameter for sharing
learnt clauses between nodes, alternate sharing clauses, and a
filter for the size of learnt shared. Several optimizations, and
simplifications.

II. METHODS

A. HESS black-box algorithm

HESS black-box algorithm [1] of º2 order to approximate
values from an Oracle, In this case a ”On The Fly” oracle
as execution of SLIME and the sequence used to maximize
the selection of rephase heuristics like Multi-armed bandit
algorithm.

B. HESS º2 order (On The Fly)

• Create an initial sequence array ρ(1, 2 . . . n)
• Repeat to a final state.
• Set the current value to ∞.
• Set i to 0 and j to 0.
• increment j, if j == n increment i and put j = 0, if

i == n, put i = 0 and j = 0. (two for loops)
• invert the array from min(i, j) to max(i, j)
• Get oracle() (call the search algorithm, and use the

curren order of the array for select the bandit)
1) less than current value, reassign and retain the cur-

rent assignment, and continue with next increment.
2) if greater, change the array to original state, and

continue with next increment.
3) if equal, continue with next increment.

• Continue with execution and repeat from step 2.

C. Experimental Evaluation

The default version of SLIME solve the 80% of the entire
Crypto Track 2021 (a set of cryptography instances) at 18000
seconds at www.starexec.org cluster.

III. SLIME CLOUD

Consist on a MPI implementation of SLIME where all nodes
compete for the solution, can generate certificates for UNSAT.

REFERENCES

[1] Balyo , T , Froleyks , N , Heule , M , Iser , M , Järvisalo , M
Suda , M (eds) 2021 , Proceedings of SAT Competition 2021 : Solver
and Benchmark Descriptions . Department of Computer Science Report
Series B , vol. B-2021-1 , Department of Computer Science, University
of Helsinki , Helsinki .

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

32

Solvers Cadical ESA and Kissat MAB ESA in
2022 SAT competition

1st Shuolin Li
Aix Marseille Univ, Université de Toulon

CNRS, LIS, Marseille, France
shuolin.li@etu.univ-amu.fr

2nd Jordi Coll
Aix Marseille Univ, Université de Toulon

CNRS, LIS, Marseille, France
jordi.coll@lis-lab.fr

3rd Chu-Min Li
Université de Picardie Jules Verne

Amiens, France
Aix Marseille Univ, Université de Toulon

CNRS, LIS, Marseille, France
chu-min.li@u-picardie.fr

4th Mao Luo
School of Computer Science,

Huazhong Univ of Science and Technology
Wuhan, China

maoluo@hust.edu.cn

5th Djamal Habet
Aix Marseille Univ, Université de Toulon

CNRS, LIS, Marseille, France
Djamal.Habet@univ-amu.fr

6th Felip Manyà
Artificial Intelligence Research Institute

CSIC,Bellaterra, Spain
felip@iiia.csic.es

Abstract—This document describes the solvers Cadical ESA
and Kissat MAB ESA submitted to the 2022 SAT competition.

As a technology that can reduce the number of variable
in a CNF formula, and thus reduce the search space, variable
elimination is essential for modern SAT solvers. In MiniSat [1]
and its derived solvers, variable elimination is used in prepro-
cessing, and in Kissat [2] and other Kissat-based solvers, it is
used in inprocessing.

The main work that variable elimination does is: choose a
variable x to eliminate, resolve x, for each clause c contains
literal x and each clause d contains literal ¬x, combine c and
d into a new clause resolvent, after that, add all of the new
non-tautology resolvents into clause set and delete all clauses
contain literal x or ¬x.

Each time a variable elimination procedure starts, there is
a question that needs to be answered: which variables should
we delete? Usually, when solver delete a variable x whose
literal x occurs in pos clauses and literal ¬x occurs in neg
clauses, it can add pos × neg new clauses, and the increase
in the total number of clauses can be pos× neg − pos− neg
in the worst case. When pos and neg are large, this increase
appears to be too expensive. So, one would naturally prefer to
eliminate those variables that won’t cause too big increase in
total number of clauses.

With this consideration, the usual variable scoring formula
used in the modern solvers is:

score(x) = a× (pos× neg) + b× (pos+ neg) (1)

In Equation (1), a and b are two parameters chosen experi-
mentally, which are used to control the contribution of the two

This work has been partially funded by the French Agence Nationale de
la Recherche, 35 reference ANR-19-CHIA-0013-01, and the Spanish AEI
project PID2019-111544GB-C2. We also thank the MATRICS platform of
the university of Jules Verne.

parts. Each time the solver selects a variable to eliminate, it
just selects the variable with the lowest score.

But does it really matters eliminating these variables?
Admittedly, eliminating these variables prevents the number
of clauses from growing too fast. However, these easy-to-
eliminate (low-scoring) variables only appear in few clauses,
and eliminating them would just remove some unimportant
branches of the whole search tree.

In a solving process, different variable owns different im-
portance. Some of them decide the result of solving, but
others only disturb the search process. Eliminating those trivial
variables helps the solver focus on the core search space and
then speeds up solving time.

There are many measurements to estimate variables impor-
tance, e.g., the number of times a variable occurs in conflicts,
the number of times a variable is selected as a decision vari-
able, etc. Here we use a experimentally effective measurement:
the variable activity in VSIDS heuristic, to estimate variable
importance. The idea of variable activity in VSIDS is to give
higher scores to those variables occurring frequently in recent
conflict analysis. The variables with high activity in VSIDS
can be considered to critical for search, a solver should focus
on these variables. And low-activity variables are trivial and
should be eliminated as soon as possible, allowing to prevent
the solver from unimportant variables and help it focus on
critical search space.

We implement this idea in Cadical and Kissat MAB, result-
ing in two new solvers Cadical ESA and Kissat MAB ESA,
respectively, where ESA is short for Eliminate heap Sorted by
Activity. With this idea, Cadical ESA and Kissat MAB ESA
sort the variables in the increasing order of their VSIDS
activity and eliminate them in this order until the same stop
conditions as in Cadical and Kissat MAB are satisfied.

Since the change is very small, Cadical ESA is submitted
to the Cadical hack track. Kissat MAB ESA is submitted to

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

33

the normal Main track.

REFERENCES

[1] N. Eén and A. Biere, “Effective preprocessing in SAT through variable
and clause elimination,” in Theory and Applications of Satisfiability
Testing, 8th International Conference, SAT 2005, St. Andrews, UK, June
19-23, 2005, Proceedings, ser. Lecture Notes in Computer Science,
F. Bacchus and T. Walsh, Eds., vol. 3569. Springer, 2005, pp. 61–75.
[Online]. Available: https://doi.org/10.1007/11499107 5

[2] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020,” in Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, ser. Department of Computer Science Report Series B,
T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda,
Eds., vol. B-2020-1. University of Helsinki, 2020, pp. 51–53.

34

Kissat-MAB-rephasing and Kissat relaxed
Xinyan Chen‡, Wenxuan Guo‡, Wanqian Luo†, Hui-Ling Zhen†,

Xijun Li†, Mingxuan Yuan† and Junchi Yan‡
†Huawei Noah’s Ark Lab

‡Shanghai Jiao Tong University
{luowanqian1, zhenhuiling2, xijun.li, yuan.mingxuan}@huawei.com

{moss chen, arya g, yanjunchi}@sjtu.edu.cn

Abstract—We introduce two Kissat-based SAT solvers in this
report, i.e., Kissat-MAB-rephasing and Kissat relaxed. The idea
of these solvers falls into two categories: 1) devising a multi-
armed bandit mechanism to select rephasing schemes, and 2)
embedding local search into the CDCL solving process to explore
solutions near promising branches in the search space. The
solvers are based on Kissat and Kissat-cf, respectively.

I. INTRODUCTION

Phase selection has been a key heuristic in the design
of CDCL SAT solvers, which determines the polarity of
a branched variable. As proposed in [1], phase saving can
alleviate the problem of work repetition for non-chronological
solvers. The concept of “rephasing” first appeared in [2],
which replaces the saved phases with new values generated
by four different schemes (initial, inverted initial, flipped and
random) in arithmetically increasing conflict intervals. The
following work [3] introduced local search and best phases for
rephasing. Currently, there are two types of rephasing schemes.
In CaDiCaL and its variant, the candidate schemes are selected
in turn. Meanwhile, this decision in [4] is made according to a
predefined probability. Based on Kissat-MAB [5], we devise a
multi-armed bandit mechanism for rephasing in our proposed
solver Kissat-MAB-rephasing.

It is known that CDCL and local search are two main
paradigms for traditional SAT solvers. Recently, there have
been some attempts to equip CDCL solvers with a local
search module to boost rephasing and branching parts [6].
Our version, Kissat relaxed, focuses on the combination of
local search and relaxed CDCL [6]. If the partial assignment
satisfies some proper conditions, a “relaxed” CDCL without
backtracking will proceed until all variables are assigned and
the conflicts during the propagation will be ignored. Then
the solver calls the local search procedure from this full
assignment. If the local search finds a solution, it would return
a verdict of “satisfiable”. Otherwise, the solver backtracks to
the level before entering the relaxed CDCL and recovers to
the original CDCL mode. This design facilitates the solver
to find possible solutions when it gets close to a satisfiable
assignment. The implementation of [6] is based on Glucose [7]
and MapleLCMDistChronoBT-DL [8] rather than the winning
solver Kissat [9] in 2020, but it still ranked very high last
year. We try to transplant this idea to Kissat-cf and hope for a
greater performance boost. The local search solver in Kissat-cf
is YalSAT [10].

II. IMPLEMENTATION

A. MAB for Rephasing

Following [5], we use the Upper Confidence Bound
(UCB) [11] policy in Kissat-MAB-rephasing to choose from
the arm set:

A = {best phases, inverted, original, local search}
inheriting from Kissat 2021. The reward function (Eq. 1)
estimates the ability of current heuristic to quickly reach
conflicts:

rt(a) =
log2(decisionst)

decidedV arst
, (1)

where t denotes the current run, decisionst denotes the
number of decisions already made and decidedV arst denotes
the decided variable reached at least once in the current run.

B. Local Search with Relaxed CDCL

This method enters the relaxed mode during original CDCL
process when one of these conditions [6] is satisfied:

• |α|
|V | > p, where α is the current conflict-free partial
assignment; V is size of variables; p is a hyperparameter
set as 0.75 in our solver.

• |α|
|αmax| > q, where αmax is the past largest partial
assignment and q is a parameter set to 0.9 in our solver.

Once entering the relaxed mode, the solver will ignore 50
subsequent hits on the relaxed conditions. In this way, the local
search module is able to avoid repeated walks in neighbouring
solution space. The restart time of local search is set to 3 and
walk step in each round is limited to 500.

In Kissat relaxed, the condition is checked when no conflict
has been detected by current propagation. In the relaxed mode,
Kissat extends the branch without analysis. Once reaching a
full assignment, the solver state would be saved before calling
the walker. If the local search walker fails to find a solution,
the solver state is restored to the saved one and then backtracks
to the level before calling relaxed propagation.

REFERENCES

[1] K. Pipatsrisawat and A. Darwiche, “A lightweight component caching
scheme for satisfiability solvers,” in International conference on theory
and applications of satisfiability testing, pp. 294–299, Springer, 2007.

[2] A. Biere, “Cadical, lingeling, plingeling, treengeling and yalsat entering
the sat competition 2018,” Proceedings of SAT Competition, vol. 14,
2017.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

35

[3] S. D. QUEUE, “Cadical at the sat race 2019,” SAT RACE 2019, p. 8,
2019.

[4] X. Zhang and S. Cai, “Relaxed backtracking with rephasing,” Proceed-
ings of SAT competition, pp. 15–15, 2020.

[5] M. S. Cherif, D. Habet, and C. Terrioux, “Kissat mab: Combining vsids
and chb through multi-armed bandit,” SAT COMPETITION 2021, p. 15,
2021.

[6] S. Cai and X. Zhang, “Deep cooperation of cdcl and local search for
sat,” in Theory and Applications of Satisfiability Testing – SAT 2021,
pp. 64–81, Springer, 2021.

[7] L. Simon and G. Audemard, “Predicting learnt clauses quality in modern
sat solver,” Proc. IJCAI-2009, vol. 38, no. 4, pp. 399–404, 2009.

[8] S. Kochemazov, O. Zaikin, V. Kondratiev, and A. Semenov,
“Maplelcmdistchronobt-dl, duplicate learnts heuristic-aided solvers at
the sat race 2019,” Proceedings of SAT Race, pp. 24–24, 2019.

[9] A. B. K. F. M. Fleury and M. Heisinger, “Cadical, kissat, paracooba,
plingeling and treengeling entering the sat competition 2020,” SAT
COMPETITION, vol. 2020, p. 50, 2020.

[10] A. Biere, “Yet another local search solver and lingeling and friends
entering the sat competition 2014,” Sat competition, vol. 2014, no. 2,
p. 65, 2014.

[11] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2, pp. 235–
256, 2002.

36

CDCL Solvers with Improved Local Search
Cooperation and Pre-processing

Zhihan Chen1,2, Xindi Zhang1,2, Shaowei Cai1,2,∗ , Pinyan Lu3,4

1State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
2School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China

{chenzh, zhangxd, caisw}@ios.ac.cn
3Shanghai University of Finance and Economics, China

4Huawei TCS Lab, China
lu.pinyan@mail.shufe.edu.cn

I. Introduction Of Solvers Submitted to SC22
Our solvers submitted to SC22 are summarized in Table

I, In this document, we introduce the sequential solvers,
and the parallel solvers can be found in our another
document. Noting that all the submitted solvers follow the
standard building and running rules of SC22.

TABLE I: Solvers Submitted to SC22
Track Solver Key Techniques

Main
LSTech-Maple Deeper cooperating of CDCL and LS
LSTech-Kissat LSTech style rephasing on Kissat
Kissat-Inc LSTech’s depth updating trick to Kissat
Kissat-Pre Pre-processing before Kissat-Inc

CaDiCaL LSTech-CaDiCaL LSTech style rephasing on cadical
Parallel ParKissat-RS Random Shuffle with clause sharing

ParKissat-Pre Pre-processing, Diversification

Anniversary
Kissat-Inc Same as above
LSTech-Maple Same as above
ParKissat-Pre Same as above

II. LSTech-Maple
LSTech-Maple is an improved version of the SC21

version [3], [6]. We list the main features of the cooperation
between CDCL and local search below.

• Local search is called after a certain number of back-
trackings, which is dynamically adjusted [6].

• Rules for Generating Local Search Initial Assignment:
Let p be the size of non-conflict trail that allowing
the algorithm enter the non-backtracking stage. p =
0 at the beginning. If the CDCL process reaches a
longer no-conflict trail with size p′, then it enters the
non-backtracking stage, and p← p′ accordingly. Each
time the solver enters the non-backtracking stage, it
produces a new complete assignment, which serves as
the initial assignment for next local search call. Note
that, p is be updated by multiplying 0.9 after each
local search call.

This work is supported by NSFC Grant 62122078.
* Corresponding author
- Zhihan Chen and Xindi Zhang are co-first authors, which are

considered to have equal contributions.

• Best From Multiple Selection (BMS) [1] is added
into CCAnr. This BMS strategy is used to sample
candidate variables from a large set of candidate
variables (such as configuration changed decreasing
variables) when choosing a variable to flip.

• A filtering mechanism that blocks a local search
entrance if the difference on the initial solution with
that of the preceding local search entrance is less than
0.1%.

• Dynamically adjusted the time limit for each local
search process based on memory access numbers [3].

• A probabilist phasing strategy for local search, which
mainly depends on the local search assignments [3].

• Using conflict frequency of variables in local search to
enhance the branching heuristics in CDCL [3].

We also use two preprocessing techniques, one of which
is Equivalent-literal substitution, and the other is pro-
posed in this document.

• Equivalent-literal substitution (ELS): We generalize a
disjoint-set that is suitable for variable with polarity,
and we use it to save the equivalence relationship
between literals. We also use a hash map for fast-
searching clauses. Noting that ELS is only turned on
when the clauses are less than 1.5 million.

• Resolution Checking (RC): We use s(l) denote the
clauses set that literal l shows. For each variables
x, if |s(x)| × |s(¬x)| ≤ |s(x)| + |s(¬x)|, we will do
resolution between the two clause sets s(x) and s(¬x),
and checking whether all resulting clauses are always
true. If so, the clauses related to variable x can be
removed. The neighbor variables of success resolved
variables are set to be checked again in the next turn.
RC is a variant of the Bounded Variable Elimination,
with stricter condition.

Noting that ELS and RC are pre-processing methods
and can be used interactively until a fixpoint.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

37

III. LSTech-Kissat and LSTech-CaDiCaL
Both LSTech-Kissat and LSTech-CaDiCaL employ

the probabilistic rephasing method of LSTech-Maple,
and their base solvers are Kissat and CaDiCaL. More-
over, LSTech-Kissat uses CCAnr [2] to gain phases and
adopts the RC technique; LSTech-CaDiCaL watches the
satisfied literal as [5].

IV. Kissat-Inc and Kissat-Pre
Kissat-Inc is modified from Kissat-MAB [4], by using

the technique for generating local search initial assign-
ments used in LSTech-Maple. Specifically, we use the
strategy to manage target phase, and p is updated for
each rephasing operation. The resulting solver is named
Kissat-Inc.

Kissat-Pre extends the pre-processing techniques of
Kissat-Inc with RC and Fourier-Motzkin Variable Elim-
ination (FME).

References
[1] S. Cai. Balance between complexity and quality: Local search

for minimum vertex cover in massive graphs. In Proceedings of
the Twenty-Fourth International Joint Conference on Artificial
Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31,
2015, pages 747–753. AAAI Press, 2015.

[2] S. Cai, C. Luo, and K. Su. Ccanr: A configuration checking based
local search solver for non-random satisfiability. In International
Conference on Theory and Applications of Satisfiability Testing,
pages 1–8, 2015.

[3] S. Cai and X. Zhang. Deep cooperation of cdcl and local search
for sat. In SAT 2021, pages 64–81, 2021.

[4] M. S. Cherif, D. Habet, and C. Terrioux. Combining vsids and
chb using restarts in sat. In CP 2021, pages 1–19, 2021.

[5] N. Manthey. Cadical modification–watch sat. SAT COMPETI-
TION 2021, page 28.

[6] X. Zhang, S. Cai, and Z. Chen. Improving cdcl via local search.
SAT COMPETITION 2021, page 42, 2021.

38

Kissat Adaptive Restart, Kissat Cfexp: Adaptive
Restart Policy and Variable Scoring Improvement

Yang Li‡, Yuqi Jia‡, Wanqian Luo†, Hui-Ling Zhen†,
Xijun Li†, Mingxuan Yuan† and Junchi Yan‡

†Huawei Noah’s Ark Lab
‡Shanghai Jiao Tong University

{luowanqian1, zhenhuiling2, xijun.li, yuan.mingxuan}@huawei.com
{yanglily, jiayuqi001023, yanjunchi}@sjtu.edu.cn

Abstract—This report describes two CDCL SAT solvers:
Kissat adaptive restart, Kissat cfexp. The improvements are
two-fold: 1) The design of the adaptive restart strategy selection
for SAT solvers based on Multi-Armed Bandit algorithm; 2) The
introduction of expSAT with conflict frequency. All solvers are
based on the state-of-the-art SAT solver Kissat.

I. INTRODUCTION

Kissat adaptive restart focuses on the restart strategy,
which is one of the most critical strategies of CDCL solvers,
playing a crucial role in maintaining the searching efficiency
during instance solving [1]–[4]. The restart strategy of the
existing mainstream solvers basically follows the alternation of
stable (e.g. Luby series restarting [5]) and unstable (e.g. Glu-
cose restarting [6]) modes in rotation [1], and does not involve
efficient heuristic-guided mode selection strategies. Inspired by
Kissat mab [7], the first-place solver from main track of 2021
SAT Solver Competition, we devise a Multi-Armed Bandit
mechanism for simultaneously acquiring new knowledge about
the potential distribution of different restart strategies’ rewards
and optimizing mode selecting decisions based on existing
knowledge. The MAB mechanism is enforced among Luby
series restarting and EMA restarting [1] adopted in the current
Kissat solver, utilizing Upper Confidence Bounds (UCB) [8]
strategy at each restart.

Kissat cfexp focuses on the variable scoring strategy. In
each branching decision of a CDCL solver, the variable with
the highest activity score tends to be selected (VSIDS). It is
essential to pick the variable that makes the search process
the most effective. One promising idea is to two methods
called conflict frequency (CF) [9] and expSAT [10], both of
which try to find the branching variables that are most likely to
cause conflict. Based on Kissat solver, we modify the variable
scoring mechanism, which is employed to determine branching
variables during the branching decision.

II. IMPLEMENTATION

A. MAB for Restarting

We adopt the Upper Confidence Bounds (UCB) strategy to
decide on a preferred arm in the arm set A = {Luby,EMA}
at each restart of the backtracking algorithm. The decision-
making process relies on the solver’s performance during the

restart phase in the prior process, and the specific reward
function is presented in Eq. (1), following [7].

rt(a) =
log2(decisionst)

decidedV arst
(1)

where t denotes the current run, decisionst denotes the
number of decisions already made and decidedV arst denotes
the decided variable reached at least once in the current run.
The value of the function estimates the searching efficiency
characterized by the width of the search tree. The UCB
algorithm is formulated as follows:

UCB(a) = r̂t(a) + c ·
√

ln(t)

nt(a)
(2)

where nt(a) denotes the number of times arm a is selected
and c is a weight hyper-parameter controlling the extent of
exploration.

For implementation details, we integrate the search mode
switching logic into the kissat restarting function, which
determines the timing for restarting. Prior to the restart execu-
tion, the restart strategy is adaptively selected based on UCB.

B. ExpSAT with Conflict Frequency

There are two new terms added to the original score of one
variable x, i.e., the score obtained from the random exploration
process of expSAT (i.e. expScore) and the score representing
the conflict frequency of the variable x during local search
(namely CF score).

The expScore of x is defined as Eq. (3):

expScore(x) = avg(walkScorew(v)) (3)

for all random walk w, where

walkScorew(v) =

{
0 if no conflict in w

ωd

lbd(c) otherwise
(4)

with decay factor ω, decision distance d and the learned clause
c. And the function to obtain the CF score of variable x is
presented in Eq. (5):

Scorecf (x) =
STEPunsat

STEPtotal
(5)

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

39

where STEPunsat denotes the number of steps that at least
one unsatisfied clause contains x, and STEPtotal denotes the
number of all steps of the local search.

REFERENCES

[1] Biere A, Fröhlich A. Evaluating CDCL restart schemes[J]. Proceedings
of Pragmatics of SAT, 2015: 1-17.

[2] Oh C. Between SAT and UNSAT: the fundamental difference in CDCL
SAT[C]//International Conference on Theory and Applications of Satis-
fiability Testing. Springer, Cham, 2015: 307-323.

[3] Haim S, Heule M. Towards ultra rapid restarts[J]. arXiv preprint
arXiv:1402.4413, 2014.

[4] Van Der Tak P, Ramos A, Heule M. Reusing the assignment trail
in CDCL solvers[J]. Journal on Satisfiability, Boolean Modeling and
Computation, 2011, 7(4): 133-138.

[5] Luby M, Sinclair A, Zuckerman D. Optimal speedup of Las Vegas
algorithms[J]. Information Processing Letters, 1993, 47(4): 173-180.

[6] Audemard G, Simon L. Refining restarts strategies for SAT and UN-
SAT[C]//International Conference on Principles and Practice of Con-
straint Programming. Springer, Berlin, Heidelberg, 2012: 118-126.

[7] Cherif M S, Habet D, Terrioux C. Kissat MAB: Combining VSIDS
and CHB through Multi-Armed Bandit[J]. SAT COMPETITION 2021,
2021: 15.

[8] Auer P, Cesa-Bianchi N, Fischer P. Finite-time analysis of the multi-
armed bandit problem[J]. Machine learning, 2002, 47(2): 235-256.

[9] Cai S, Zhang X. Deep Cooperation of CDCL and Local Search for
SAT[C]//International Conference on Theory and Applications of Satis-
fiability Testing. Springer, Cham, 2021: 64-81.

[10] Chowdhury M S, You J. Guiding CDCL SAT search via random explo-
ration amid conflict depression[C]//Proceedings of the AAAI Conference
on Artificial Intelligence. 2020, 34(02): 1428-1435.

40

CADICAL-DVDL
Zhenjiang Zhao∗, Takahisa Toda∗, Takashi Kitamura†

∗Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
{zhenjiang, toda}@disc.lab.uec.ac.jp

†National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
t.kitamura@aist.go.jp

Abstract—This document describes the SAT solver CADICAL-
DVDL. Kochemazov et al. presented an efficient clause manage-
ment method for CDCL solvers that extracts duplicate conflict
clauses and stores them indefinitely. Inspired by this work,
we present a similarity-based clause management method and
implement it on top of CaDiCal 1.4.1.

I. INTRODUCTION

The conflict-driven clause learning (CDCL) is a standard
algorithmic framework on which almost state-of-the-art SAT
solvers are based [1]. During the solving process, many learnt
clauses are generated, and those turned out to be useless are
removed. The decision for the clause deletion commonly relies
on heuristics, and the same clauses can be learnt and removed
multiple times. Hence, these heuristics have a significant
impact on the solver’s performance. The recently proposed
DL heuristic [2] determines the utility of conflict clauses in
terms of the number of times clauses are recorded as conflict
clauses. To improve this, we focus on the similarity between
conflict clauses. We consider a method for determining the
clause similarity with hashing and implement it on top of
CaDiCal 1.4.1.

II. DVDL HEURISTIC AND IMPLEMENTATION

We call two learned clauses that have both the same
decision variables and the same order in the decision levels of
those decision variables as similar clauses. For instance, the
following two similar clauses are learned during CDCL:

a : (x1@4, x2@3, x3@5, x5@6)

b : (x1@3, x2@2, x5@4, x7@5)
(1)

The decision variables for both a and b are x1, x2, x5, and
the decision levels for those decision variables of a and b
are 4, 3, 6 and 3, 2, 4 respectively. When arranging decision
variables x1, x2, x5 in increasing order of decision levels, we
will get the same string ”x2x1x5”. A set of mutually similar
clauses can be represented by an identical string. Similar
clauses share the number of occurrences. We believe that
the more times similar clauses occur, the more valuable they
are. Therefore, those clauses shouldn’t be deleted when the
occurrences reach a certain number.

For implementation, unordered map in C++ Standard
Library is uses to count the number of occurrences of similar
clauses. The key of unordered map represents the string of
similar clauses just like the above-mentioned string ”x2x1x5”,

the value of unordered map refers to the number of occur-
rences of similar clauses represented by the key.

4 files subsume.cpp, analyze.cpp, internal.hpp,
vivify.cpp of CaDiCaL 1.4.1 are modified, and DVDL
heuristic is implemented within 1000 non-space characters.

In SAT Competition 2022, we submit two solvers
CaDiCaL DVDL V 1 and CaDiCaL DVDL V 2, which
differ only in parameters.

REFERENCES

[1] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh, Handbook
of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and
Applications. NLD: IOS Press, 2009.

[2] S. Kochemazov, O. Zaikin, A. A. Semenov, and V. Kondratiev,
“Speeding up CDCL inference with duplicate learnt clauses,” in ECAI
2020 - 24th European Conference on Artificial Intelligence, 29 August-8
September 2020, Santiago de Compostela, Spain, August 29 - September
8, 2020 - Including 10th Conference on Prestigious Applications of
Artificial Intelligence (PAIS 2020), ser. Frontiers in Artificial Intelligence
and Applications, G. D. Giacomo, A. Catalá, B. Dilkina, M. Milano,
S. Barro, A. Bugarı́n, and J. Lang, Eds., vol. 325. IOS Press, 2020, pp.
339–346. [Online]. Available: https://doi.org/10.3233/FAIA200111

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

41

Paracooba Enters SAT Competition 2022
Maximilian Levi Heisinger

Institute for Symbolic Artificial Intelligence
Johannes Kepler University Linz

Linz, Austria
maximilian.heisinger@jku.at

PARACOOBA is a parallel, distributed, Cube-and-Conquer
(CnC) SAT solver based on KISSAT [1] and CADICAL [2].
It tries to split problems into sub-problems by recursively
setting variables to concrete values, i.e. applying assumptions
to the original formula. These sub-problems are then solved
with the incremental version of CADICAL, combined with
an (optional) timer to stop the solving process and re-split
the formula again. Next to this parallel solving process, an
instance of KISSAT is also running sequentially to stop bad
splits from having too large impacts. The PARACOOBA solver
can be found on GitHub using the URL below.

github.com/maximaximal/paracooba

I. FORMULA SPLITTING

Splitting formulas is based on our implementation of tree-
based lookahead [3] part of CADICAL. If the splitting with
lookahead takes too long, we fall back to the number of
occurrences of variables. The chosen variable x is then deemed
to be the most decicive one and used to split the formula φ into
φ∧¬x and φ∧x. Now, if both sub-formulas are unsatisfiable,
the whole formula is also unsatisfiable. If one is satisfiable,
the whole formula is also satisfiable with the same assignment.
This process is repeated until a predefined cube-tree-depth is
reached, which defaults to saturate the locally available cores.
Sub-problems usually vary greatly in their hardness and are
then solved in individual solver threads or offloaded to other
worker nodes in the network.

II. COMMUNICATION AND TASK SCHEDULING

The communication between nodes uses a custom binary
protocol transported via TCP. After starting, a fully intercon-
nected network of workers is created. Every worker receives
utilization information of all other worker nodes and is thus
able to decide locally, whether to offload work from the local
queue to other nodes in the network. The dynamic offloading
of tasks ensures that the highly different task hardness is
mitigated by always saturating as many cores as possible.

To start, paracooba does not need the addresses of it’s work-
ers. The main node can start on it’s own and either immediately
start solving (if local worker threads were enabled) or idle until
worker nodes connect to it. The main node listens on a port for
incoming connections from workers (both the port and listen
address are configurable). After connecting, workers receive
all other known peers from the peer they connected to, in turn
forming the fully connected network explained above. Workers

may solve multiple problems at once, problems sharing the
available worker threads on a given node.

III. EXTENDING PARACOOBA

PARACOOBA is built to be highly modular, also offering a
QBF solving module. The software is MIT-licensed and can be
found on GitHub. More detauls about the implementation, the
employed algorithms and the expandability can be found in
[4] and [5]. Possible extension points are the communication
stack, the solver module, the offloading / scheduling mecha-
nism, and the local task runner. Extensions may be loaded from
provided shared object files at start-up. Automated testing of
modules is done using integration tests, also provided in the
repository.

REFERENCES

[1] A. Biere, K. Frazekas, M. Fleury, M. Heisinger, CaDiCaL, Kissat,
Paracooba,

[2] A. Biere, CaDiCaL at the SAT Race 2019, SAT Race 2019
[3] M. Heule, M. Järvisalo, A. Biere, Revisiting hyper binary resolution,

International Conference on Integration of Constraint Programming,
Artificial Intelligence, and Operations Research. Springer, Berlin, Hei-
delberg, 2013

[4] M. Heisinger, M. Fleury, A. Biere, Distributed Cube and Conquer with
Paracooba, SAT2020

[5] M. Heisinger, Distributed SAT & QBF Solving: The Paracooba Frame-
work, 2021 Plingeling and Treengeling Entering the SAT Competition
2020, SAT 2020

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

42

DPS-Kissat
Hidetomo Nabeshima Tsubasa Fukiage Yuto Obitsu Xiao-Nan Lu

University of Yamanashi
Yamanashi, JAPAN

{nabesima,xnlu}@yamanashi.ac.jp

Katsumi Inoue
National Institute of Informatics

Tokyo, JAPAN
inoue@nii.ac.jp

Abstract—DPS is a framework for easily constructing
efficient deterministic parallel SAT solvers, providing
the delayed clause exchange technique introduced in
ManyGlucose. We applied DPS to Kissat to construct
a portfolio parallel SAT solver DPS-Kissat.

I. Introduction
DPS is a framework for easily implementing determinis-

tic portfolio parallel SAT solvers for shared memory multi-
core environment, that guarantee reproducible behavior.
Reproducibility means that the execution result (the run-
ning time and a found model if satisfiable) does not
change across runs. DPS is a successor to the deterministic
parallel SAT solver ManyGlucose [1], from which it ex-
tracts and generalizes the mechanisms necessary to achieve
reproducible behavior. We applied DPS to Kissat [2], one
of the state-of-the-art sequential SAT solvers, to construct
a portfolio parallel SAT solver DPS-Kissat.

II. Delayed Clause Exchange
In parallel SAT solvers, reproducibility is lost when

learnt clauses are exchanged asynchronously. Synchronous
clause exchange ensures reproducibile behavior, but in-
creases latency. The delayed clause exchange introduced
in ManyGlucose allows a certain delay in the timing of
clause exchanges, thereby absorbing fluctuations in the ex-
change interval and can reduce reducing the waiting time.
However, implementing delayed clause exchange requires
expert knowledge of concurrent programming, so intro-
ducing it into existing sequential SAT solvers is a time-
consuming task. We have extracted the delayed clause
exchange method from ManyGlucose and developed a
framework DPS with a generic interface to facilitate its
integration into existing sequential solvers.

DPS-Kissat is a deterministic parallel SAT solver that
applies the delayed clause exchange provided by our frame-
work to Kissat.

III. Portfolio Strategy
The diversity strategy of DPS-Kissat consists of the

following three elements:
1) random variable selection until the first conflict oc-

curs except for the first thread. The random seeds
use different values for each thread.

2) 24 different search strategy settings shown in the
portfolio parallel SAT solver PaKis [3].

3) disabled elimination in half of threads.
The first strategy was introduced in ManySAT 2.0 [4], the
first deterministic parallel SAT solver. Clause exchange in
non-deterministic parallel SAT solvers is one of the causes
of search diversity due to its asynchronous nature, but
this is not expected in deterministic solvers, so strategies
such as random decision are necessary to ensure diversity.
PaKis executes 24 Kissat processes with different strate-
gies in parallel without clause exchange, and has won the
parallel SAT track in the SAT 2021 competition. The last
strategy was introduced because there were some instances
where a lot of time was spent on in-processing.

IV. Implementation
DPS-Kissat parallelizes Kissat-SC2021 [5], which re-

quired about 400 lines of modification to Kissat and
about 400 lines for the wrapper class to incorporate
Kissat into DPS. The version submitted to SAT Compe-
tition 2022 launches 32 threads. The results are guaranteed
to be reproducible. DPS supports non-deterministic mode,
which is also entered in the competition as NPS-Kissat.

Acknowledgment
This work was supported by JSPS KAKENHI Grant

Numbers JP20H05963, JP20K11934. In this research work
we used the supercomputer of ACCMS, Kyoto University.

References
[1] H. Nabeshima and K. Inoue, “Reproducible efficient parallel SAT

solving,” in Proceedings of the 23rd International Conference on
Theory and Applications of Satisfiability Testing (SAT 2020),
LNCS 12178, 2020, pp. 123–138.

[2] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL,
Kissat, Paracooba, Plingeling and Treengeling entering the
SAT competition 2020,” http://hdl.handle.net/10138/318450,
2020, SAT Competition 2020 Solver Description.

[3] R. K. Tchinda and C. T. Djamegni, “hKis, hCaD, PaKis and
PaInleSS_ExMapleLCMDistChronoBT in the SC21,” http:
//hdl.handle.net/10138/333647, 2021, SAT Competition 2021
Solver Description.

[4] Y. Hamadi, S. Jabbour, C. Piette, and L. Sais, “Deterministic
parallel DPLL,” Journal on Satisfiability, Boolean Modeling and
Computation, vol. 7, no. 4, pp. 127–132, 2011.

[5] A. Biere, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba entering the SAT competition 2021,” http://hdl.
handle.net/10138/333647, 2021, SAT Competition 2021 Solver
Description.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

43

ITMO-ParSAT, the parallel solver
utilizing probabilistic backdoors at the

SAT Competition 2022
Ibragim Dzhiblavi, Daniil Chivilikhin, Stepan Kochemazov and Alexander Semenov

Email:dzhiblavi@gmail.com, chivdan@gmail.com, veinamond@gmail.com, axelvonemes@gmail.com

Abstract—This document describes the ITMO-ParSAT parallel
solver. It utilizes the Painless framework together with a
novel idea on finding probabilistic backdoors to SAT to combine
portfolio and divide-and-conquer approaches in a single solver.

I. INTRODUCTION

ITMO-ParSAT is a novel parallel solver, that was imple-
mented on top of P-MCOMSPS, the winner of the parallel track
of SAT Competition 2021 [1]. It combines two main parts: the
first part is similar to the aforementioned P-MCOMSPS solver.
The second part of the solver utilizes a recently proposed
idea of probabilistic backdoors for SAT [2] to find promising
decompositions of a formula in a manner reminiscent of Cube
and-Conquer [3] solvers, such as e.g. Treengeling [4].
Essentially, it employs a metaheuristic optimization algorithm
to find a special set called a probabilistic backdoor which is
then used to split the original SAT instance into subproblems
that can be solved independently. To solve them, it employs
MapleCOMSPS-based [5] subsolvers similar to the ones used
in Painless [6].

II. PROBABILISTIC BACKDOORS

The idea of backdoors goes back to the paper [7] by Ryan
Williams, Carla Gomes and Bart Selman. They introduced
the concept of the so-called strong backdoor sets. If C is
a SAT instance, then a Strong Backdoor Set (SBS) is such
a set of variables from C that the substitution of any of
their assignments into C results in a formula for which
SAT is solvable by a polynomial algorithm (e.g. continuous
application of the unit propagation rule).

The attractiveness of strong backdoors is easy to see: if we
have an SBS and it is small, then the hardness of the problem
is defined by the size of the SBS. Unfortunately, small strong
backdoors are exceedingly rare and also very hard to find. This
fact led to the development of other variants of backdoors to
SAT, see e.g. [8]. They are usually formed by lifting some of
the restrictions imposed on SBS.

The probabilistic backdoors employed by the proposed
solver are among the most novel variants of backdoors. They
have been proposed in the recent paper [2].

Let C be a CNF formula over Boolean variables X , B be a
subset of X (B ⊆ X), and A be some polynomial algorithm.
Next, denote the set of all assignments of variables from B by
{0, 1}|B|. By C[β/B] we denote the CNF formula obtained
from C by substituting the values β ∈ {0, 1}|B| to variables

from B. The notation C[β/B] ∈ S(A) means that SAT for
C[β/B] is solvable by algorithm A.

Definition. The set B ⊆ X is called a ρ-backdoor (ρ ∈
[0, 1]) w.r.t. A if the fraction of CNF formulas C[β/B] that
belong to S(A) over all possible β ∈ {0, 1}|B| is at least ρ.

It is clear that ρ-backdoors can be viewed as a straightfor-
ward probabilistic generalization of SBS [7], because the value
of ρ represents the probability that the polynomial algorithm
A will solve C[β/B] for a randomly chosen β ∈ {0, 1}|B|.

We use the Unit Propagation rule as algorithm A. In [2] it
was shown that it is possible to accurately approximate ρ for a
given set B via the Monte Carlo method. In practice it makes
sense to find small sets B with large ρ. It can be done e.g. via
a metaheuristic optimization algorithm, since it is quite cheap
to construct the estimation of ρ for any given set B.

A. Using probabilistic backdoors to solve SAT
Assume that we have a small ρ-backdoor B (say, |B| ≤ 16),

with ρ = 0.99. How can we use it to solve SAT for the CNF
C? The basic scheme is as follows: we use unit propagation
to traverse all β ∈ 2|B| and filter out the ones that are solved
by UP. The remaining portion of no more than 0.99 · 2|B|

subproblems may be significantly simpler compared to the
original SAT instance, since the values of many variables are
fixed in the corresponding formula C[β/B]. Regardless of the
complexity, they can be solved in parallel using assumptions
and incremental SAT, as it is done in Cube-and-Conquer [3].
Particularly hard subproblems C[β/B] can be additionally
(recursively) decomposed via probabilistic backdoors.

B. Using several probabilistic backdoors at once
As it was noted in [2], one can combine several ρ-backdoors

with sufficiently high ρ into a single large backdoor. For
example, if we have backdoors B1, . . . , B5, we can form a
single backdoor B∗ = ∪5i=1Bi. The main advantage of such
a combination is that we can separately construct the sets
of subproblems that can not be resolved by UP for each Bi

and the Cartesian product of such sets forms the set of such
subproblems for B∗. Note, that if |B∗| > 50 it is basically
impossible to construct such a set by naively traversing all
β ∈ {0, 1}|B∗|.

III. ITMO-PARSAT
As we noted above, the solver is based on the Painless

framework [6], in particular, on its most recent incarnation

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

44

from 2021, P-MCOMSPS [1]. The original P-MCOMSPS oc-
cupies 27 out of 64 threads. An additional thread is occupied
by the lstech_maple solver [9] in more or less pristine
condition. The remaining 36 threads are engaged in finding
probabilistic backdoors, and solving the original instance using
them. The reasoning behinds this is that one cannot expect that
solving with backdoors will be fast for all instances, so using
other solvers in parallel seems to be a good choice.

A. Finding backdoors
The backdoor finding stage in ITMO-ParSAT is organized

similar to the procedure described in [2] with several additional
tweaks and optimizations.

We employ metaheuristic algorithms (e.g. (1+1) evolution-
ary algorithm) to find probabilistic backdoors. To reduce the
search space we use the following heuristic. For each variable
xi ∈ X we separately unit propagate both x and ¬x (just like
in look-ahead solvers or in Failed Variable Probing) and com-
pute the size of the union of sets of assumed and propagated
literals. Then, we pick 300 variables with the largest value of
this statistic. After this, we launch metaheuristic search which
is allowed to work only with the chosen 300 most important
variables.

As the metaheuristic algorithm we employ the evolutionary
algorithm in the configuration identical to the one described
in [2]. All 36 threads are engaged in this process using varying
degrees of parallelism. The process stops when one of the
specific conditions is satisfied, e.g. the time limit is exceeded,
or the number of iterations with no improvements reaches a
certain limit.

An important optimization we added in comparison to [2] is
an efficient algorithm for calculating ρ using unit propagation.
Suppose we want to check if for some β ∈ {0, 1}|B| the
corresponding CNF C is solved by the polynomial subsolver
A: C[β/B] ∈ S(A), i.e. a conflict is generated by the solver
as a result of applying UP with assumptions β. But in many
cases, some prefix of β already leads to a conflict. Based on
this idea, we implemented an algorithm that uses a tree of
assumptions β, detects conflicts early and does not descend
into subtrees that already correspond to a conflict. In fact, it
closely resembles DPLL repurposed to compute the number
of leaves satisfying a certain criterion.

B. Solving SAT with backdoors
When solving SAT instances using a backdoor B, we

need to solve the “hard” subproblems C[β/B] /∈ S(A).
If the instance is satisfiable, then as soon as one of these
subproblems is found to be satisfiable, the solver generates
a satisfying assignment and terminates.

C. Communication between different parts
The clause sharing is performed in the following manner:

the portfolio part (27 threads of Painless) and the backdoor
part (36 threads of MapleCOMSPS) follow the rules set in
P-MCOMSPS. Other than that, the portfolio part, the back-
door part, and the lstech_maple solver additionally share
clauses in a round-robin fashion.

IV. SUBMITTED CONFIGURATIONS

We submit the solver in two configurations which differ
only in the way the probabilistic backdoors are employed.

A. Configuration A

The first configuration (to which we refer as configuration
A) employs a single probabilistic backdoor. The subprob-
lems that are not resolved by Unit Propagation are solved
by MapleCOMSPS subsolvers with the time limit of three
minutes. If a subproblem C[β/B] is not solved within this time
limit, then it is recursively decomposed (i.e. we find another
probabilistic backdoor treating this subproblem as the original
one). The depth of recursion is limited to one.

B. Configuration B

The second configuration (Configuration B) employs mul-
tiple backdoors in the manner described in Section II-B.
In particular, it finds at most 10 probabilistic backdoors,
and then combines them in such a way that the number of
resulting subproblems does not exceed 8 · 106. The recursive
decomposition is disabled in this configuration.

V. AVAILABILITY

The source code of the solver is available online 1

REFERENCES

[1] V. Vallade, L. L. Frioux, R. Oanea, S. Baarir, and J. Sopena, “New Con-
current and Distributed Painless solvers: P-MCOMSPS, P-MCOMSPS-
COM, P-MCOMSPS-MPI, and P-MCOMSPS-COM-MPI,” in Proc. of
SAT Competition 2021, 2021, pp. 40–41.

[2] A. Semenov, A. Pavlenko, D. Chivilikhin, and S. Kochemazov, “On
Probabilistic Generalization of Backdoors in Boolean Satisfiability,” in
Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelli-
gence, (AAAI-22), in press. AAAI Press, 2022.

[3] M. J. H. Heule, O. Kullmann, S. Wieringa, and A. Biere, “Cube and
Conquer: Guiding CDCL SAT Solvers by Lookaheads,” in Hardware and
Software: Verification and Testing, 2012, pp. 50–65.

[4] A. Biere, “CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT entering
the SAT competition 2017,” in Proc. of SAT Competition 2017, vol. B-
2017-1, 2017, pp. 14–15.

[5] J. H. Liang, C. Oh, V. Ganesh, K. Czarnecki, and P. Poupart, “Maple-
COMSPS, MapleCOMSPS LRB, MapleCOMSPS CHB,” in Proc. of
SAT Competition 2016, vol. B-2016-1, 2016, pp. 52–53.

[6] L. L. Frioux, S. Baarir, J. Sopena, and F. Kordon, “PaInleSS: A framework
for parallel SAT solving,” in SAT, ser. LNCS, vol. 10491, 2017, pp. 233–
250.

[7] R. Williams, C. P. Gomes, and B. Selman, “Backdoors to typical case
complexity,” in IJCAI, 2003, pp. 1173––1178.

[8] A. A. Semenov, O. Zaikin, I. V. Otpuschennikov, S. Kochemazov, and
A. Ignatiev, “On cryptographic attacks using backdoors for SAT,” in
AAAI, 2018, pp. 6641–6648.

[9] X. Zhang, S. Cai, and Z. Chen, “Improving CDCL via Local Search,” in
Proc. of SAT Competition 2021, 2021, pp. 42–43.

1https://github.com/dzhiblavi/itmo-parsat

45

Mallob in the SAT Competition 2022
Dominik Schreiber

Institute of Theoretical Informatics
Karlsruhe Institute of Technology

Karlsruhe, Germany
dominik.schreiber@kit.edu

Abstract—We describe our submissions to the parallel and
cloud tracks of the SAT Competition 2022. Notable differences
over last year’s submission include a reworked clause sharing
mechanism with a new approach to distributed clause filtering;
further solvers and updated solver configurations; and an addi-
tional kind of memory awareness.

Index Terms—Parallel SAT solving, distributed SAT solving

I. INTRODUCTION

In this report we describe the configurations of our sys-
tem Mallob which we submit to this year’s International
SAT Competition. Mallob (Malleable Load Balancer / Multi-
tasking Agile Logic Blackbox) is a decentralized job schedul-
ing platform capable of prioritizing, balancing, and processing
many SAT instances at once [1]. However, due to the rules
of the competition, we configure our system to immediately
schedule a single instance (i.e., the problem input) with full
demand of resources and to quit after its processing.

II. SYSTEM AND SOLVER SETUP

As in last years [2], [3], we subdivide each physical compute
node into groups of four hardware threads each and run one
MPI process on each such group. Each MPI process then
deploys four core solvers. Contrary to last years where we
run solvers as separate threads within each MPI process,
this year each MPI process spawns a separate subprocess
which runs four solver threads. This has two advantages:
First, from a fault-tolerance perspective, individual solvers
crashing (e.g., due to pathological inputs or internal errors)
do not break the entire system but trigger a clean restart
of the concerned subprocess. Secondly, we can deliberately
restart individual solver processes for the purpose of memory
awareness (see IV.). Despite these benefits, we acknowledge
that this approach incurs some overhead for Inter-Process
Communication, especially for transferring the formula and
for periodic clause sharing.

In its current state, Mallob features four full-featured solver
interfaces, namely for Lingeling [4], Glucose [5], CaDiCaL
[6], and Kissat [6]. Most recently, we modified Kissat’s
codebase to support import and export of redundant clauses
(only triggered at decision level 0 and every 500 conflicts) as
well as setting initial phases for individual variables.

For the Parallel Track we submit a version with a portfolio
purely consisting of Kissat configurations. We refer to this
version as Mallob-Ki. In addition, we submit the most diverse
portfolio Mallob can currently employ to the Cloud Track:

We mix Kissat, CaDiCaL, Lingeling, and Glucose solvers
roughly weighted according to their relative base performance
and memory efficiency (eight parts Kissat, six parts CaDiCaL,
four parts Lingeling, and two parts Glucose). We refer to this
version as Mallob-Kicaliglu.

For both of these versions, we have identified strong solver
configurations by running each SAT solver in various different
configurations on the benchmarks of the International SAT
Competition 2020.

III. CLAUSE EXCHANGE

We have reimplemented and overhauled large portions of
Mallob’s clause sharing strategy. Most significantly, we intro-
duce a new approach to clause filtering, i.e., the problem of
deciding for a shared clause c and a solver S whether S has
received or produced c before and should therefore not receive
c (again). The previous clause filtering mechanism of Mallob
(inherited from HordeSat [7]) featured multiple large Bloom
Filters at each solver process which occasionally result in
erroneous rejection of unseen clauses. The probability for such
false positives grows with the number of clauses registered in
the filters, which may become noticeable in large distributed
systems with millions of clauses being shared.

Our new clause filtering mechanism is exact and requires
memory proportional to the set of “potentially good” clauses
produced by a given solver process. We use two local datas-
tructures: First, a hash table H of clauses maps each produced
clause to a small bundle (32 bits) of meta data, including its
LBD score, which local solver(s) produced it, and whether it
was shared before. Secondly, a buffer structure B maintains
a space-limited selection of the best clauses ready for export,
discarding some of the worst clauses if better clauses arrive.
Clause quality is determined by clause length and (secondar-
ily) by LBD score. Our approach functions as follows:
• A clause c learnt by a solver which meets a basic quality

criterium (length ≤ 20) is checked against H . If c /∈ H
and if c fits into B, then c is inserted into B and H .

• At clause exchange time, each process flushes the highest
priority clauses from B up to a certain total length.

• A buffer b of globally best clauses is aggregated and then
shared among all processes as described in [1].

• Each process iterates over each clause ci ∈ b and checks
whether qi := [ci ∈ H and ci is marked as shared] = 1.
A bit vector ṽ is constructed: ṽ[i] := qi for each ci. If
c ∈ H and c was not shared before, c is marked as shared.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

46

• All created bit vectors ṽ are reduced to a single filter
vector v via bitwise OR operations. v is aggregated and
then shared among all processes just like b.

• Each process iterates over b and v simultaneously and
only considers clauses ci for which v[i] = 0. Each such
clause c is forwarded to all local solvers which have not
produced c yet according to H[c].

The described approach ensures that a clause c shared in a
given epoch e ∈ N will not be re-shared in a later epoch e′ > e,
since there is at least one process where c was produced and
where, consequently, it was marked as shared in epoch e. At
epoch e′, this status is propagated to all processes via v, hence
c is filtered. We can still allow for clauses to be reshared after a
certain period of time elapsed: We can store in H[c] the epoch
e where c was last shared, and we re-admit c for sharing if e
is sufficiently old. Likewise, we can allow re-sharing a clause
if its LBD score improved since the last sharing. However, we
did not find re-sharing upon improved LBD to be promising,
and we set the minimum period until a clause is re-shared to
a conservative 500 s.

We implemented B as an array of buckets, one bucket
for each clause length 1 ≤ l ≤ 20. Each bucket features
a list of clauses which can be added to or removed from.
A global budget integer represents the remaining number of
literals which can still be inserted until B is full. If this budget
is insufficient for inserting a given clause c of length l, an
attempt is made to discard clauses from a bucket l′ > l
in order to “steal” space for c. If this is unsuccessful, c is
discarded. With this flexible buffering structure, we account for
the observation that different solvers export differently sized
clauses at different points in time during the solving procedure:
For this reason, the available space is balanced dynamically
among the different clause quality levels.

We employ the same data structure as B for the import
buffer BS of each solver S. This way, the buffering of incom-
ing clauses is robust towards solvers which may not import
clauses for a long period of time and therefore necessitate
dropping some buffered clauses.

IV. MEMORY AWARENESS

Last year we introduced a rudimentary kind of memory
awareness to Mallob: When starting to solve a formula, the
number of contained literals is used to decide on how many
threads to spawn in each MPI process. While this measure can
be effective for some inputs, it does not address all issues.
Memory usage which is initially acceptable but then grows
to unsustainable levels is not accounted for. Furthermore, for
extreme inputs even spawning a single solver thread for each
MPI process may require too much memory.

This year we introduce an additional measure to counteract
excessive memory usage. At program start, we create one
communicator for the MPI processes at each physical machine.
In other words, we identify groups of MPI processes with
a shared RAM budget. Each group periodically checks the
current memory usage of its machine and exchanges certain
diagnostics for each MPI process. If a certain memory limit

is exceeded (> 90% of RAM used), one or multiple MPI
processes are chosen to trigger a memory panic. The heuristic
which decides on the particular process(es) considers the
memory used by each process as well as the importance of
its role in the portfolio. A memory panic at a process which
currently runs t solver threads triggers an immediate restart of
the SAT solving process with t−1 solver threads. For extreme
cases this can go as low as t = 0, i.e., no more solvers are
executed on this MPI process. The decision heuristic ensures
that at least one active solver thread remains on each machine.

ACKNOWLEDGMENT

The author expresses his heartfelt thanks to Laurent Simon
and Armin Biere for allowing the use of Glucose, Kissat,
CaDiCaL, and Lingeling in the competition. Furthermore,
the author thanks Maximilian Schick for implementing initial
CaDiCaL bindings for Mallob which we built upon. The author
gratefully acknowledges the Gauss Centre for Supercomputing
e.V. (www.gauss-centre.eu) for funding this project by provid-
ing computing time on the GCS Supercomputer SuperMUC-
NG at Leibniz Supercomputing Centre (www.lrz.de). More-
over, some preparation for this work was performed on the
HoreKa supercomputer funded by the Ministry of Science,
Research and the Arts Baden-Württemberg and by the Federal
Ministry of Education and Research. This project has received
funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 882500).

REFERENCES

[1] D. Schreiber and P. Sanders, “Scalable SAT solving in the cloud,” in
International Conference on Theory and Applications of Satisfiability
Testing, 2021. In review.

[2] D. Schreiber, “Engineering HordeSat towards malleability: mallob-mono
in the SAT 2020 cloud track,” in Proc. of SAT Competition, pp. 45–46,
2020.

[3] D. Schreiber, “Mallob in the SAT competition 2021,” SAT COMPETI-
TION 2021, p. 38.

[4] A. Biere, “CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT
entering the SAT competition 2018,” Proc. of SAT Competition, pp. 13–
14, 2018.

[5] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in Twenty-first International Joint Conference on Artificial
Intelligence, 2009.

[6] A. B. K. F. M. Fleury and M. Heisinger, “CaDiCaL, kissat, paracooba,
plingeling and treengeling entering the sat competition 2020,” SAT
COMPETITION, vol. 2020, p. 50, 2020.

[7] T. Balyo, P. Sanders, and C. Sinz, “Hordesat: A massively parallel portfo-
lio SAT solver,” in International Conference on Theory and Applications
of Satisfiability Testing, pp. 156–172, Springer, 2015.

47

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

48

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

49

50

ParKissat: Random Shuffle Based and Pre-processing
Extended Parallel Solvers with Clause Sharing

Xindi Zhang1,2, Zhihan Chen1,2, Shaowei Cai1,2,∗

1State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
2School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China

{zhangxd,chenzh,caisw}@ios.ac.cn

I. Introduction
In this document, we introduce two parallel solvers

called ParKissat-RS and ParKissat-Pre, where
ParKissat is short for Parallel Kissat. The main novelty of
ParKissat-RS is to randomly shuffle the initial variable
branching order for each thread, which shows surprisingly
good performance on satisfiable instances. Additionally,
random shuffle cooperates well with clause sharing, and
also gains improvements on UNSAT instances. The main
novelty of ParKissat-Pre is adding some pre-processing
techniques and using both VMTF and LRB in the focused
mode.

II. Literal Assumption and Random Shuffle
Current parallel solvers in SAT Competitions can

mainly be divided into the portfolio-based method and
the partitioning-based method, and the first one is usu-
ally more powerful in SAT Competitions. By preliminary
experiments, we noticed that there are some crucial vari-
ables. Given a formula F , a crucial variable x is a partition
pivot such that solving sub-formulae F ∧ x and F ∧ ¬x
in two threads separately gains at least 2× acceleration.
Sometimes, we can even find a crucial variable with 10×
acceleration. In practice, it is hard to accurately find such
a crucial variable heuristically. As a result, we design a
simple parallel method called Literal Assumption (LA)
that randomly assumes one literal for each thread. With
the advantages of parallel, the more sampling, the more
possibility to gain the crucial variable.

The LA method shows surprisingly good performance
on satisfiable instances but is weak on the unsatisfiable
instances. The completeness of LA on unsatisfiable in-
stances needs to be guaranteed by two threads solving the
paired sub-formulae. LA can be seen as random fixing a
variable as the first branching variable, so we designed
a generalized version called Random Shuffle (RS), which
shuffles the initial branching order randomly. Each thread
of RS is a normal CDCL procedure, and thus preserves the

This work is supported by NSFC Grant 62122078.
* Corresponding author
- Xindi Zhang and Zhihan Chen are co-first authors, which are

considered to have equal contributions.

completeness of the CDCL solver. Additionally, we use two
common techniques, clause sharing, and diversification, to
improve the overall performance.

III. Solvers Submission
All solvers submitted to SC22 are summarized in Table

I, this document mainly introduces the parallel solvers,
and the sequential solvers can be found in our another
document. Noting that all the submitted solvers follow the
standard build and running rules of SC22.

TABLE I: Solvers Submitted to SC22
Track Solver Key Techniques

Main
LSTech_Maple Deeper cooperating CDCL and LS
LSTech_Kissat LSTech style rephasing on Kissat
Kissat-Inc LSTech’s depth updating trick to Kissat
Kissat-Pre Pre-processing before Kissat-Inc

CaDiCaL LSTech_CaDiCaL LSTech style rephasing on cadical
Parallel ParKissat-RS Random Shuffle with clause sharing

ParKissat-Pre Pre-processing, Diversification

Anniversary
Kissat-Inc Same as above
LSTech_Maple Same as above
ParKissat-Pre Same as above

A. ParKissat-RS
ParKissat-RS is a parallel solver built upon Kissat-

MAB [2]. It uses the PaInLeSS [4] framework to im-
plement the clause sharing method, and each thread
shares at most 1500 literals from clauses with LBD≤ 2
every 0.5s. Diversification is also used to improve the
robustness of instances from different categories. In detail,
ParKissat-RS uses three parameters of Kissat [3] called
stable (0/1/2), target (0/1/2) and phase (0/1) and decides
whether using CCAnr [1]. Meanwhile, ParKissat-RS also
uses a simplification method based on equivalent-literal
substitution (ELS) and resolution checking (RC) to pre-
process the CNF files, and the detailed information can be
found in our sequential document this year.

B. ParKissat-Pre
ParKissat-Pre is a parallel solver aiming to ob-

tain with a balanced ability for both SAT and UN-
SAT. ParKissat-Pre removes the RS technique from
ParKissat-RS and replaces the base CDCL solver with
Kissat-bonus [6], which bumps the variable branching

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

51

score according to LBD. Different from ParKissat-RS,
ParKissat-Pre changes the stable, target and chrono
(0/1) parameters for diversification. Further, It allows to
use the learning rate-based branching methods (LRB) [5]
in the focused mode of Kissat-bonus, which in default
only allows the Variable Move to Front (VMTF) branching
method in this mode. Moreover, ParKissat-Pre extends
the simplification method of ParKissat-RS with Fourier-
Motzkin Variable Elimination (FME) to handle cardinal-
ity constraints and Gaussian Elimination (GE) to handle
XOR equations.

References
[1] S. Cai, C. Luo, and K. Su. Ccanr: A configuration checking based

local search solver for non-random satisfiability. In International
Conference on Theory and Applications of Satisfiability Testing,
pages 1–8, 2015.

[2] M. S. Cherif, D. Habet, and C. Terrioux. Combining vsids and
chb using restarts in sat. In CP 2021, pages 1–19, 2021.

[3] A. B. K. F. M. Fleury and M. Heisinger. Cadical, kissat, para-
cooba, plingeling and treengeling entering the sat competition
2020. SAT COMPETITION 2020, page 50, 2020.

[4] L. Le Frioux, S. Baarir, J. Sopena, and F. Kordon. Painless: a
framework for parallel sat solving. In SAT 2017, pages 233–250,
2017.

[5] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki. Learning
rate based branching heuristic for sat solvers. In SAT 2016, pages
123–140, 2016.

[6] X. Zhang, S. Cai, and Z. Chen. Improving cdcl via local search.
SAT COMPETITION 2021, page 42, 2021.

52

BENCHMARK DESCRIPTIONS

AWS CBMC Benchmarks
Ronak Fofaliya

Amazon Web Services
New York, USA

ronakf@amazon.com

Jim Grundy
Amazon Web Services

Austin, USA
jmgruj@amazon.com

Robert Jones
Amazon Web Services

Portland, USA
rbtjones@amazon.com

Kareem Khazem
Amazon Web Services

London, United Kingdom
karkhaz@amazon.com

Benjamin Kiesl
Amazon Web Services
Munich, Germany

benkiesl@amazon.de

Angelo Nakos
Amazon Web Services

Boston, USA
anakos@amazon.com

Michael Tautschnig
Amazon Web Services

Vienna, Austria
tautschn@amazon.at

Michael W. Whalen
Amazon Web Services
Minneapolis, USA

mww@amazon.com

Abstract—This document describes the CBMC benchmark
formulas submitted by Amazon Web Services to the SAT Com-
petition 2022.

Index Terms—CBMC, formal verification, SAT solving

I. INTRODUCTION

The benchmarks submitted by Amazon Web Services
(AWS) represent some of the hardest SAT problems generated
by the bounded model checker CBMC [1] when verifying
open-source code at AWS.

CBMC is a bounded model checker for C and C++ that is
used to formally verify software correctness. To verify a given
program, CBMC generates formulas in propositional logic and
sends them to a SAT solver. These benchmarks represent a
subset of the hardest formulas generated by CBMC during
the verification of open source projects at AWS. The projects
use CBMC as part of their continuous-integration pipelines to
check properties such as memory safety, absence of undefined
C language behavior, preservation of data structure invariants,
and pre/post conditions describing some kinds of functional
correctness.

II. SIGNIFICANCE OF THESE BENCHMARKS

Several teams at AWS use CBMC to verify the correctness
of their safety-critical source code. CBMC proofs are checked
into the codebase and run in continuous-integration pipelines
each time a contributor opens a pull request for one of the
source-code repositories [2]. CBMC performance is therefore
critical to developer productivity. The performance of SAT
solvers on formulas produced by CBMC plays an important
role since CBMC’s runtime is often dominated by the runtime
of the SAT solver. For example, when analyzing CBMC’s
runtime on hard problems of AWS’s open-source projects
(problems on which CBMC took more than 10 seconds), we
found that about 90 percent of the runtime is spent inside the
solver.

We have selected some of the hardest CBMC problems as
benchmarks for the SAT competition. Improvements in solver
technology that improve performance on these benchmarks
will directly translate to developer productivity in an industrial
setting.

III. OVERVIEW OF SOURCE PROJECTS

The formulas in this benchmark suite arise from the follow-
ing open-source projects:

• FreeRTOS [3]
• AWS Encryption SDK for C [4]
• AWS IoT Over-the-air Update Library [5]
• s2n-tls [6]
• AWS C Common Library [7]

FreeRTOS. FreeRTOS is a real-time operating system
(RTOS) for microcontrollers and small microprocessors. It
includes a kernel and a growing set of IoT libraries suitable
for use across all industry sectors [8].

AWS Encryption SDK for C. The AWS Encryption SDK
is a client-side encryption library designed to make it easy
for developers to encrypt and decrypt data using industry
standards and best practices. It enables developers to focus
on the core functionality of their application, rather than on
the details of encryption and decryption [9].

AWS IoT Over-the-air Update Library. The AWS IoT over-
the-air update library provides extensive functionality for the
management of firmware updates on IoT devices. For example,
it provides functionality for the managament of notifications
for newly available updates, the download of updates, and their
cryptographic verification [5].

s2n-tls. s2n-tls is a C99 implementation of the TLS/SSL
protocols that is designed to be simple, small, and fast. It was
implemented with security as a priority [6].

AWS C Common Library. The AWS C Common library is
the core C99 package for the AWS SDK for C, which sim-
plifies the integration of applications with AWS services. The
AWS C Common library includes cross-platform primitives,
configuration, data structures, and error handling [7].

REFERENCES

[1] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2004), ser. Lecture Notes in Computer Science,
K. Jensen and A. Podelski, Eds., vol. 2988. Springer, 2004, pp. 168–176.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

54

[2] N. Chong, B. Cook, J. Eidelman, K. Kallas, K. Khazem, F. R. Monteiro,
D. Schwartz-Narbonne, S. Tasiran, M. Tautschnig, and M. R. Tuttle,
“Code-level model checking in the software development workflow at
amazon web services,” Softw. Pract. Exp., vol. 51, no. 4, pp. 772–797,
2021. [Online]. Available: https://doi.org/10.1002/spe.2949

[3] “FreeRTOS,” https://github.com/FreeRTOS/, accessed: 2022-05-09.
[4] “AWS Encryption SDK for C,” https://docs.aws.amazon.com/

encryption-sdk/latest/developer-guide/introduction.html, accessed:
2022-05-09.

[5] “AWS IoT Over-the-air Update Library,” https://github.com/aws/
ota-for-aws-iot-embedded-sdk, accessed: 2022-05-09.

[6] “s2n,” https://github.com/aws/s2n-tls, accessed: 2022-05-09.
[7] “AWS C Common,” https://github.com/awslabs/aws-c-common, ac-

cessed: 2022-05-09.
[8] “The FreeRTOS kernel,” https://www.freertos.org/RTOS.html, accessed:

2022-05-09.
[9] “What is the AWS encryption SDK?” https://github.com/aws/

aws-encryption-sdk-c, accessed: 2022-05-09.

55

Hardware Model Checking Certificates
Emily Yu Nils Froleyks

Johannes Kepler University Linz, Austria

Armin Biere Mathias Fleury
University of Freiburg, Germany

I. CERTIFYING MODEL CHECKING RESULTS

The proposed benchmark set is obtained from our recent
work on certifying k-induction-based model checking [1]. The
model checking technique k-induction [2] is widely used for
verification. A safety property is said to be k-inductive iff it
satisfies the following two cases: it holds for k−1 consecutive
steps originating from the initial states; if it holds for k − 1
steps of unrolling, it also holds at the next state after one
transition.

The key idea of certifying a model checking result in
a generic form is to generate an inductive invariant as a
proof certificate which implies the safety property in the
given model. The certification framework proposed in [1]
reduces the certification problem to five SAT checks and a one-
alternation QBF, allowing certification at a low complexity. In
a nutshell, the approach extends the given model to a larger
circuit (namely k-witness circuit) with an inductive invariant.
Two SAT checks and one QBF check are used to verify the so-
called combinational simulation relation between the original
circuit and the k-witness circuit. Furthermore, another three
SAT checks are generated for checking the inductive invariant
in the k-witness circuit.

The size of the k-witness circuit is in principle linear in the
size of the original circuit and the value of k. One of the most
essential features is that it includes k copies of the original
machine, and allows multiple ways of initialisation. The new
property in the k-witness circuit (the inductive invariant) is
composed of five sub-properties.

To verify φ(I, L) (a formula over the inputs and latches)
is indeed an inductive invariant in the k-witness circuit, the
following formulas are generated:

• Initiation check (R(L) ⇒ φ(I, L)): the inductive invari-
ant must hold at all initial states.

• Consistency check (φ(I, L) ⇒ P (I, L)): the inductive
invariant must hold at all good states.

• Consecution check (U1 ∧ φ(I0, L0) ⇒ φ(I1, L1)): the
inductive invariant is preserved during one transition.

II. GENERATED INSTANCES

The certification approach is implemented into a toolkit
Certifaiger [1], which takes as inputs a model in AIGER for-
mat [3] and a value of k which is usually provided by a model
checker (here we used McAiger [4]). The toolkit originally
uses Kissat [5] as the underlying SAT solver, however, in this
paper we modified it to use MiniSAT instead.

All benchmarks are obtained by running against a subset of
HWMCC’2010 [6] benchmarks which McAiger successfully
terminated with. We found 7 SAT formulas for which MiniSAT
experienced a timeout of 15 minutes. (However, they were
originally solved by Kissat and are unsatisfiable.) Among
those, one is an initiation check, and the rest are consecution
checks. We then add these 7 formulas to our benchmark set.

As the nature of k-induction, if a property is m-inductive
in a model for some arbitrary m, it is also n-inductive in
the same model for any n such that n > m. Therefore we
obtained another 3 benchmarks from the same set by scaling
the inductive depths to 500.

As for the satisfiable instances, we added the 4 instances
with the same inductive depth 80 to the benchmark set,
which originally were timed out on Kissat mentioned in the
paper [1] from the pj20 family. We used McAiger to inspect
the inductive depths, which confirms that the values of k are
greater than 80, making the consecution check fail thus the
formulas satisfiable. With the same logic, we obtained further
6 benchmarks by scaling the inductive depths. The names of
the benchmarks are composed by following the convention:
original benchmark name + “ k” + inductive depth. There
are two exceptions starting with the name “bobsmdct init”,
where “bobsmdct” is the model name and “ init” is for
explicitly stating initiation checks.

REFERENCES

[1] E. Yu, A. Biere, and K. Heljanko, “Progress in certifying hardware model
checking results,” in CAV (2), ser. Lecture Notes in Computer Science,
vol. 12760. Springer, 2021, pp. 363–386.

[2] M. Sheeran, S. Singh, and G. Stålmarck, “Checking safety properties
using induction and a SAT-solver,” in FMCAD, ser. Lecture Notes in
Computer Science, vol. 1954. Springer, 2000, pp. 108–125.

[3] A. Biere, K. Heljanko, and S. Wieringa, “AIGER 1.9 and beyond,”
Institute for Formal Models and Verification, Johannes Kepler University,
Altenbergerstr. 69, 4040 Linz, Austria, Tech. Rep. 11/2, 2011.

[4] A. Biere and R. Brummayer, “Consistency checking of all different
constraints over bit-vectors within a SAT solver,” in FMCAD. IEEE,
2008, pp. 1–4.

[5] A. Biere, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat, Paracooba
entering the SAT Competition 2021,” in Proc. of SAT Competition 2021
– Solver and Benchmark Descriptions, ser. Department of Computer
Science Report Series B, T. Balyo, N. Froleyks, M. Heule, M. Iser,
M. Järvisalo, and M. Suda, Eds., vol. B-2021-1. University of Helsinki,
2021, pp. 10–13.

[6] A. Biere and K. Claessen, “Hardware model checking competition 2010,”
2010, http://fmv.jku.at/hwmcc10/.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

56

Minimum Disagreement Parity (MDP) Benchmark
Randal E. Bryant

Computer Science Department
Carnegie Mellon University, Pittsburgh, PA, United States

Email: Randy.Bryant@cs.cmu.edu

I. OBTAINING BENCHMARKS

The benchmark generator, files, and documentation are
available at:

https://github.com/rebryant/mdp-benchmark

II. DESCRIPTION

Crawford, Kearns, and Shapire proposed the Minimum
Disagreement Parity (MDP) Problem as a challenging SAT
benchmark in an unpublished report from AT&T Bell Labo-
ratories in 1994 [1].

MDP is closely related to the “Learning Parity with Noise”
(LPN) problem. LPN has been proposed as the basis for
public key crytographic systems [2]. Unlike the widely used
RSA cryptosystem, it is resistant to all known quantum
algorithms [3]. The capabilities of SAT solvers on MDP
is therefore of interest to the cryptography community. We
provide these benchmarks as a way to stimulate the SAT
community to expand beyond pure CDCL, incorporating other
solution methods into their SAT solvers.

Crawford wrote a benchmark generator in the 1990s
and supplied several files to early SAT competitions with
names of the form parN-S.cnf, where N is the size
parameter and S is a random seed. These had values of
N ∈ {8, 16, 32}. These files are still available online at
https://www.cs.ubc.ca/ hoos/SATLIB/benchm.html.
SAT solvers of that era were challenged by N = 16 and
could not possibly handle N = 32. Unfortunately, the code
for his benchmark generator has disappeared.

We wrote a new benchmark generator for the MDP problem.
In doing so, we added more options for problem parameters
and encoding methods. We also replaced the binary encoding
of at-most-k constraints with a more SAT-solver-friendly unary
counter encoding [4].

III. PROBLEM DESCRIPTION

In the following, let B = {0, 1} and Np = {1, 2, . . . , p}.
Assume all arithmetic is performed modulo 2. Thus, if a, b ∈
B, then a+ b ≡ a⊕ b.

The problem is parameterized by a number of solution bits
n, a number of samples m, and an error tolerance k, as follows.
Let s = s1, s2, . . . , sn be a set of solution bits. For 1 ≤ j ≤ m,
let Xj ⊆ Nn be a sample set, created by generating n random
bits x1,j , x2,j , . . . xn,j and letting Xj = {i|xi,j = 1}. Let

y = y1, y2, . . . , ym be the parities of the solution bits for each
of the m samples:

yj =
∑

i∈Xj

si (1)

Given enough many samples m for there to be at least n
linearly independent sample sets, the values of the solution
bits s can be uniquely determined from y and the sample sets
Sj for 1 ≤ j ≤ m by Gaussian elimination. To make this
problem challenging, we introduce “noise,” allowing up to k
of these samples to be “corrupted” by flipping the values of
their parity. That is, let T ⊆ Nm be created by randomly
choosing k values from Nm without replacement, and define
m “corruption” bits r = r1, r2, . . . , rm, with rj equal to 1
if j ∈ T and equal to 0 otherwise. We then provide noisy
samples y′, defined as:

y′j = rj +
∑

i∈Xj

si (2)

and require the correct solution bits s to be determined despite
this noise. That is, the generated solution s must satisfy at least
m − k of equations (1). For larger values of k, the problem
becomes NP-hard.

This problem can readily be encoded in CNF with variables
for unknown values s and r, along with some auxilliary
variables. We further parameterize the problem with a value
t ≤ k, indicating the maximum number of corrupted sam-
ples accepted in the solution, where the problem should be
satisfiable when t = k but may become unsatisfiable for
t = k − 1. Each of the m equations (2) is encoded using
auxilliary variables to avoid exponential expansion. An at-
most-t constraint is imposed on the corruption bits r.

For t = k, the solution s is not guaranteed to be unique,
but we allow any solution that satisfies at least m − k of
the constraints (1). In addition, setting t = k − 1 does not
guarantee that the formula is unsatisfiable. Indeed, we found
some instances where there was a solution that satisfied m−
k + 1 constraints.

By analyzing the CNF file, it is possible to discern the
sample sets Sj and the values of the noisy samples y′.
The values of s and r, however, remain hidden, except as
comments at the start of the file.

Crawford suggests choosing n to be a multiple of 4 and
letting m = 2n and k = m/8 = n/4. Our benchmark files
were all generated under those conditions.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

57

IV. PROVIDED FILES

The generator mdp-gen.py and an associated README
file are located in the src subdirectory. This directory also
contains a program mdp-check.py. Given a .cnf file
generated by mdp-gen.py and the output of a successful
run of a SAT solver, it can check that the solution for the
input variables representing s indeed satisfies at least m − k
of the equations of (1). The supplied benchmark files were
generated by running the script generate.sh in the src
subdirectory.

There are 30 files: five satisfiable and five unsatisfiable
instances for n ∈ {28, 32, 36}, generated using five different
random seeds. The seeds were adjusted so that the 15 instances
generated with t = k − 1 are all unsatisfiable, as is discussed
below.

We tested these benchmarks using the KISSAT [5] CDCL
solver. Measurements were peformed on a 3.2 GHz Apple
M1 Max processor with 64 GB of memory and running the
OS X operating system, with a time limit of 5000 seconds per
run. For n = 28, KISSAT can easily handle both the satisfiable
and the unsatisfiable instances, with times ranging from 30 to
900 seconds. For the satisfiable instances with n = 32, it can
solve some in just 30 seconds, but times out for two of the
five runs. It times out on all unsatisfiable instances for n = 32,
and it times out on all satisfiable and unsatisfiable instances
for n = 36.

We also tested the benchmarks with CRYPTOMINISAT, a
CDCL solver augmented with the ability to perform Gauss-
Jordan elimination on parity constraints [6]. It can easily
handle all satisfiable instances, never requiring more than 90
seconds. When not required to generate a proof of unsatisfia-
bility, it can also easily handle all of the unsatisfiable instances.
That is how we ensured that the instances with t = k − 1
are unsatisfiable. Currently, CRYPTOMINISAT cannot generate
DRAT proofs of unsatisfiability when it uses Gauss-Jordan
elimination, and so it fares no better than KISSAT on the
unsatisfiable instances when proof generation is required.

CRYPTOMINISAT can scale to n = 60 without difficulty.
Nonetheless, the problem is still NP-hard, and so even CRYP-
TOMINISAT only pushes the boundary before exponential
scaling limits feasibility.

REFERENCES

[1] J. M. Crawford, M. J. Kearns, and R. E. Schapire, “The minimal disagree-
ment parity problem as a hard satisfiability problem,” 1994. [Online].
Available: http://www.cs.cornell.edu/selman/docs/crawford-parity.pdf

[2] J. Katz, “Efficient cryptographic protocols based on the hardness of
learning parity with noise,” in Cryptography and Coding, ser. LNCS,
vol. 4887, 2007, pp. 1–15.

[3] K. Pietrzak, “Cryptography from learning parity with noise,” in SOFSEM
2012: Theory and Practice of Computer Science, ser. LNCS, vol. 7147,
2012, pp. 99–114.

[4] C. Sinz, “Towards an optimal CNF encoding of Boolean cardinality
constraints,” in Principles and Practice of Constraint Programming (CP),
ser. LNCS, vol. 3709, 2005, pp. 827–831.

[5] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020,” in Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, ser. Department of Computer Science Report Series B, vol.
B-2020-1. University of Helsinki, 2020, pp. 51–53.

[6] M. Soos, K. Nohl, and C. Castelluccia, “Extending SAT solvers to
cryptographic problems,” in Proc. of the 12th Int. Conference on Theory
and Applications of Satisfiability Testing (SAT 2009), ser. LNCS, vol.
5584, 2009, pp. 244–257.

58

Verifying Optimums of Weighted (Partial) Max-SAT
Formulas

Mohamed Sami Cherif, Djamal Habet and Cyril Terrioux
Aix-Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France

{mohamed-sami.cherif, djamal.habet, cyril.terrioux}@univ-amu.fr

Abstract—Checking whether a certain bound holds over a
set of relaxation variables is a subproblem which often arises
in the context of Maximum Satisfiability (Max-SAT) solving
and particularly SAT-based solving. This document describes
a collection of SAT instances that have been submitted to the
2022 SAT competition. These instances are derived from weighted
(partial) Max-SAT formulas augmented with relaxation variables.
An At-Most-K constraint is then set over these variables to check
the validity of a provided bound. We use this process to verify
known solutions of weighted (Partial) Max-SAT formulas.

Index Terms—SAT, weighted Max-SAT, At-Most-K constraint

I. INTRODUCTION

The maximum satisfiability (Max-SAT) problem is an opti-
mization extension of the satisfiability (SAT) problem. For a
given formula in Conjunctive Normal Form (CNF), it consists
in finding an assignment of the variables which maximizes
the number of satisfied clauses. In Partial Max-SAT, clauses
are divided into hard and soft clauses and the goal is to find
an assignment that satisfies all hard clauses and maximizes
the number of satisfied soft clauses. Another variant of this
problem is weighted (partial) Max-SAT where each clause
is associated to a positive weight in the input formula. Hard
clauses which must be satisfied can be considered of infinite
weight. For a given weighted CNF formula, this variant
consists in finding an assignment satisfying all the hard clauses
and maximising the sum of weights over satisfied soft clauses.

In recent years, Max-SAT solvers have achieved great
breakthroughs by relying on SAT technology. In fact, complete
methods for this problem include SAT-based approaches which
iteratively call SAT solvers making them particularly efficient
on industrial instances [5]. Checking whether a certain bound
holds over a set of relaxation variables is a subproblem which
often arises in the context of Max-SAT solving and particularly
in SAT-based solving. For instance, Linear Search algorithms
[3], [4] augment soft clauses with relaxation variables and add
a CNF encoding over their sum to specify that the number of
falsified soft clauses must be less than a given bound. A SAT
solver is then iteratively called and the bound is increased
(resp. decreased) until the formula becomes satisfiable (resp.
unsatisfiable). Similarly to these algorithms, we rely on the
fact that the optimum of a weighted (partial) Max-SAT formula
is the threshold in which the formula becomes satisfiable to
verify the validity of a given optimum. To this end, given a
weighted (partial) Max-SAT formula and an integer value, we

encode two SAT instances to check whether the given value
is the threshold, i.e. the optimum of the formula.

II. VERIFYING WEIGHTED (PARTIAL) MAX-SAT
OPTIMUMS

First, we deal with unweighted (partial) formulas as spec-
ified in [1] then we show how to extend this encoding to
weighted (partial) formulas. Let ϕ = H ∪S be a Partial Max-
SAT formula where H denotes the set of hard clauses and
S = {c1, . . . , cm} the set of soft clauses. Let k be an integer
value. We define the following formula:

ϕk = H ∪ {ci ∪ {ri} | ci ∈ S} ∪ CNF (
∑

1≤i≤m

ri ≤ k)

where r1, . . . , rm are new relaxation variables.
To verify that a given value o is the optimum of a CNF

formula ϕ, it is sufficient to check that this value is the
threshold in which the formula becomes satisfiable. To this
end, we need to encode the formulas ϕo−1 and ϕo and verify
that ϕo−1 is unsatisfiable and ϕo is satisfiable.

To deal with weighted formulas in the form ϕ =
{(C1, w1), . . . , (Cm, wm)}, we simply encode them as an
unweighted (partial) formula ϕ′ = H ∪ S using a multiset
for soft clauses as follows:

H = {C | (C,∞) ∈ ϕ}

S =
⊎

1≤i≤m
wi<∞

(
⊎

1≤j≤wi

{Ci})

where
⊎

denotes the sum operation on multisets, which
maintains the multiplicity of elements after union. Note that
a new literal li can be added for each non unit soft clause
Ci where 1 < wi < ∞ in order to avoid duplicating whole
clauses as follows:

H = {C | (C,∞) ∈ ϕ}∪
{li ↔ Ci | (Ci, wi) ∈ ϕ, |Ci| > 1 and 1 < wi <∞}

S = (
⊎

1≤i≤m
wi=1

Ci)
⊎

(
⊎

1≤i≤m
|Ci|=1
wi<∞

(
⊎

1≤j≤wi

Ci))
⊎

(
⊎

1≤i≤m
|Ci|>1
wi<∞

(
⊎

1≤j≤wi

{li}))

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

59

III. THE SUBMITTED BENCHMARK

We consider the argumentation framework synthesis [7]
(af-synthesis) family in the 2020 Max-SAT Evaluation1. We
picked the 12 instances which were used in the weighted
benchmark. Note that the optimums of these instances are
known as they were solved each by at least one of the solvers
submitted to the evaluation. Taking these optimum values into
account, we apply the previous encoding for each instance.
The benchmark we submit to the 2022 SAT competition thus
includes 24 instances in total with 12 satisfiable instances and
12 unsatisfiable ones. We maintain the same naming conven-
tions for the instances except that we add ’ sat’ or ’ unsat’ to
each formula indicating respectively whether it is satisfiable
or unsatisfiable. We used the PySAT library [2] to add the
cardinality constraints (i.e. At-Most-K constraints) over the
relaxation variables. The encoding chosen for these constraints
is the modulo totalizer for k-cardinality (mktotalizer) encoding
[6]. Finally, it is important to note that, once the constraints
added, the clauses in the resulting formulas are shuffled.

REFERENCES

[1] M. S. Cherif, D. Habet, and C. Terrioux. Verifying Optimums of (Partial)
Max-SAT Formulas. In Proceedings of SAT Competition 2021: Solver and
Benchmark Descriptions, volume B-2021-1 of Department of Computer
Science Series of Publications B, page 49. University of Helsinki, 2021.

[2] A. Ignatiev, A. Morgado, and J. Marques-Silva. PySAT: A Python toolkit
for prototyping with SAT oracles. In SAT, pages 428–437, 2018.

[3] M. Koshimura, T. Zhang, H. Fujita, and R. Hasegawa. Qmaxsat: A partial
max-sat solver system description. Journal on Satisfiability, Boolean
Modeling and Computation, 8, 01 2012.

[4] D. Le Berre and A. Parrain. The sat4j library, release 2.2, system
description. Journal on Satisfiability Boolean Modeling and Computation,
7:59–64, 07 2010.

[5] A. Morgado, F. Heras, M. Liffiton, J. Planes, and J. Marques-Silva.
Iterative and core-guided MaxSAT solving: A survey and assessment.
Constraints, 18, 10 2013.

[6] A. Morgado, A. Ignatiev, and J. Marques-Silva. MSCG: robust core-
guided maxsat solving. J. Satisf. Boolean Model. Comput., 9(1):129–134,
2014.

[7] A. Niskanen, J. P. Wallner, and M. Järvisalo. Synthesizing argumentation
frameworks from examples. In Proceedings of the Twenty-Second
European Conference on Artificial Intelligence, ECAI’16, page 551–559,
NLD, 2016. IOS Press.

1https://maxsat-evaluations.github.io/2020/

60

The Graceful Production Problem
Md Solimul Chowdhury

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA.
mdsolimc@cs.cmu.edu

Abstract—A production manager at the FantasyElectronics
corporation is working on tackling a production challenge for
their new product iImagine, which is a multi-purpose gadget.
The manager needs to devise a production plan based on the
requirements set by top managements at FantasyElectronics.
First, he needs to make sure that such a production plan exists
which respects these requirements.

The company has one production factory with u ≥ 1 produc-
tion units.

1 Each unit produces 0 or more gadgets each day, some
of which may have manufacturing defects and are not
functioning.

2 The capacity of each unit limits a maximum of m ≥ 0
functioning gadgets each day.

The production venture of iImagine needs to fulfill the following
requirements: (i) each day, these u units need to produce at least
u ∗ k number of iImagaine in total, where k ≥ 1, (ii) the total
number of functioning iImagaine produced in a day needs to be
higher or equal to its previous day’s total, and (iii) For any given
day, for these u units, the minimum number of gadgets produced
must be greater than the minimum number of gadgets produced
in the previous day. Is it possible for these units to run for D ≥ 2
days, while satisfying these requirements? The manager needs to
find answer of this question.

We call this problem Graceful Production (GP) Problem. We
formulate GP as a SAT problem. We have submitted 20 instances
of GP to the SAT Competition-2022.

I. SAT ENCODING OF THE GP PROBLEM

A. GP as a SAT Benchmark

Each one of these u > 1 units has maximum production
limit of m ≥ 0 per day. These u units must run for D ≥ 2
days, where the production venture must respect the following
three constraints:
atleast: In any given day, the total number of gadgets produced
by u units must be at least u ∗ k, where k > 1.
steady: For any two consecutive days d and d′, where d′ =
d + 1, the total number of gadgets produced in d′ is greater
or equal to the number of gadgets produced in d′.
robust: For any two consecutive days d and d′, the minimum
number of gadgets produced by u units in day d′ must be
higher or equal to the minimum number of gadgets produced
in day d. Fig 1 shows an example of the GP problem.

Here, we encode the GP problem as a SAT benchmark. Let
pdi be the number of gadgets produced by unit i in day d,
where 1 ≤ d ≤ D and 1 ≤ i ≤ u. Given a GP problem, we
encode it as a SAT formula FGP as follows

FGP = Fatleast ∪ Fsteady ∪ Frobust ∪ Fends

units day sum min

1 11 12 3 1 27 1

18 2 10 9 2 29 2

10 5 20 8 3 43 5

7 13 12 12 4 44 7
Fig. 1: An example of the GP problem. It shows four days
of operations for four production units. Number in black in
each squared cell in the leftmost grid represents the number
of gadgets produced by an unit on a given day. In this example,
In each day, sum and min of productions are higher than the
previous day’s sum and min.

, where, Fatleast, Fsteady, Frobust, and Fends are defined as
follows:

Fatleast :

D∧

d=1

u∑

i=1

pdi ≥ u ∗ k

Fsteady :
D−1∧

d=1

u∑

i=1

pd+1
i ≥

u∑

i=1

pdi

Frobust :
D−1∧

d=1

min (pd1 . . . p
d
u) ≤ min (pd+1

1 . . . pd+1
u)

Fends :
D∧

d=1

¬pd0 ∧ ¬pdn+1

Over D days,
• Fatleast encodes the atleast constraint.
• Fsteady encodes the steady constraint.
• Frobust encodes the robust constraint.
• Fends encodes the assertion that left unit (resp. right

unit) of the leftmost (resp. rightmost) always produces
0 gadgets, which marks the horizon of the factory.

FGP is SATISFIABLE, if the factory can run for D days by
conforming to the atleast, steady, robust, and ends constraints,
otherwise, it is UNSATISFIABLE.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

61

II. PROBLEM MODELING AND INSTANCE GENERATION
FOR THE GP BENCHMARKS

A. Problem Modeling

picat [1] is a CSP solver, which accepts a CSP problem
and converts it to a SAT CNF formula, which is inturn solved
by a SAT solver hosted by picat. Before solving the converted
CNF formula, picat outputs the CNF formula.

To generate instances for the GP benchmark, we use this
CNF generation feature of picat. First, we modelled the GP
problem in a picat program picatGP . Then, for a given set
of parameter values for (D,m, k, u), we use this picatGP

model to generate CNF FGP by exploiting the CNF generation
functionality of picat.

B. Instance Generation

We have generated a set of FGP instances with the picatGP

by varying the parameters D, k, and u, while setting m
(maximum production limit of an unit per day) to a fixed
value of 1,000. From this set of instances, we have submitted
20 instances for SAT competition-2022 (CNF file has the the
following format GPD u k).

REFERENCES

[1] Picat, http://picat-lang.org/resources.html, Accessed: 2020-04-09

2

62

Bounded Model Checking Instances generated by
ABC-BMC

Fei Geng, Lei Yan and ShuCheng Zhang
TCS Lab, Huawei Technologies, Beijing, China

{gengfei12, david.yan, zhangshucheng}@huawei.com

Abstract—This paper describes our benchmarks for SAT
Competition 2022. The formulas are generated by ABC-BMC2
engine with satoko as sat solver engine. The input files for the
BMC engine are from the HWMCC (Hardware Model Checking
Competition), which use the AIG format.

I. INTRODUCTION

Sat solver is one of the most important tools for bit-level
model checking. BMC [1] (bounded model checking) has been
one of the most effective algorithms for model checking since
it was proposed by Armin Biere in 2003. Another SAT-based
model checking algorithm is IC3 [2] , different from the BMC
algorithm, the scale of instances to be solved by IC3 sat solver
will be decreased significantly compared to BMC due to the
feature of unrolling. Therefore, the performance requirements
of IC3 for the sat solver are not as high as those of algorithm.

For a safety property, the BMC algorithm will copy the
entire circuit network each time frame. In the k-th step, the
sequential circuit will be expanded into a connection of k
non-sequential circuits, and the non-sequential circuit will be
encoded into CNF format and handed over to the sat solver.
If the solver gives the UNSAT result, it means that the BAD
state(also called unsafe state) is unreachable within k steps.
If the solver gives the SAT result, it means that the BMC
algorithm has found a witness at time k. The BMC algorithm
can generally only be used to find counter-example and cannot
be used to prove safety.

Since the BMC needs to expand the encoding based on
the circuit network of the previous state at each time frame,
the circuit scale (also the CNF scale) will increase linearly
with iteration. Therefore, it is difficult for the BMC to find
out solution when the BAD state is hidden deeply, and the
performance requirements of the sat solver are also very high.

II. FEATURES

• Like the features of the circuit instances, once the circuit
input and initial latch values are determined, the values
of all nodes will be determined, and more specific circuit
characteristics are determined by the original AIG file.

• The entire CNF has sub-structural similarity, and the
circuits added in each step are isomorphic but have
different index.

• The BMC encoder will return a literal representing the
BAD state. This bad state will be given to the sat solver
as an assumption for solving, which can be regarded as
a unit clause in CNF.

III. BENCHMARK SELECTION

We used the single track benchamrk of HWMCC [3] (Hard-
ware model checking competition) 2017 as the AIG input,
and used the BMC2 engine with satoko in the ABC [4] tool
to solve the safety property checking problem. For deriving
CNF files, we called satoko write dimacs to dump the CNF
file when BMC try to invoke satoko, and add the assumption
literal as unit clause in the end of the dumping file. Half of
the instances originate from the AIG that cannot be proved
or solved by any model checker in the competition. The case
naming rule is name IterX.cnf , name refers to the instance
name of the Aiger format source file of HWMCC, X indicates
that the BMC engine generates the CNF in step X for the sat
solver to solve, the original AIG files can be downloaded here
http://fmv.jku.at/hwmcc17/hwmcc17-single-benchmarks.tar.xz

REFERENCES

[1] Biere A, Cimatti A, Clarke E M, et al. Bounded model checking[J].
2003.

[2] Bradley A R. SAT-based model checking without unrolling[C] In-
ternational Workshop on Verification, Model Checking, and Abstract
Interpretation. Springer, Berlin, Heidelberg, 2011: 70-87.

[3] Hardware Model Checking Competition 2017.
[Online] http://fmv.jku.at/hwmcc17/

[4] U. Berkeley, ABC: A system for sequential synthesis and verification,
Berkeley Logic Synthesis and Verification Group. 2009.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

63

Unique Reconfiguration Sequence
Nils Froleyks , Emily Yu

Johannes Kepler University Linz
Austria

Armin Biere
Albert Ludwigs University Freiburg

Germany

The independent Set Reconfiguration Problem (ISP) was
the topic of the Core Challenge 2022[2]. For a detailed
description, see their website.

Given an undirected graph G and two independent sets
ISstart and IStarget of G, find a sequence of independent
sets starting with IStarget and ending in IStarget, such that
two consecutive sets only differ in one node.

The presented encoding was used to find the longest valid
reconfiguration sequence, therefore we added a uniqueness
constraint to the problem definition: No independent set in
the sequence may appear more than once.

ISstart IStarget

The encoding for a given makespan is straight-forward:
• For each step we have one variable for each node v in

G, encoding if v is part of the current independent set.
• For each set we add one clause for each edge in G to

enforce independence.
• For two adjacent steps we add the constraint that the

number of variables ⊤ in one and ⊥ in the other is exactly
one, we do this in both directions. For the at-most-one
part, we use a Cartesian-product-encoding [1].

• Lastly, we ensure that each set is different from every
previous set in at least one variable.

The benchmark set contains 10 satisfiable and 10 unsatisfi-
able benchmarks. There are three reasons why an endcoding
might be unsatisfiable:

1) The makespan is too low to reach the target set.
2) There are shorter reconfiguration sequences that reach

the target, but under the uniquness constraint it is not
possible to reach it with the given makespan.

3) The ISP is unsolveable independent of the makespan.
We included examples for all cases.

The benchmarks are named according to the following
convention:
reconf<10/20>_<makespan>_<ISP name>.cnf
Where a 10 indicates satisfiablity and a 20 unsatisfiablity.

The last part is a shortened version of the original ISP instance
name from the Core Challenge.

Acknowledgements: This work is supported by the Austrian
Science Fund (FWF) under projects W1255-N23 and S11408-
N23 as well as the LIT AI Lab funded by the State of Upper
Austria.

REFERENCES

[1] Jingchao Chen. “A New SAT Encoding of the At-Most-
One Constraint”. In: Proc. Constraint Modelling and
Reformulation (2010), p. 8.

[2] Takehiro Ito, Yoshio Okamoto, and Takehide Soh. Core
Challenge 2022. URL: https://core-challenge.github.io/
2022/.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

64

Group ring units in SAT
Giles Gardam

Mathematical Institute
University of Münster

Münster, Germany
ggardam@uni-muenster.de

Abstract—We describe SAT benchmarks encoding the existence
of non-trivial units in group rings.

I. GROUP RING UNITS

In algebra, the group ring K[G] of a group G over a field
K (e.g. the two-element field F2) consists of the finite formal
K-linear sums of group elements. A unit is an element with
a multiplicative inverse; a group is called torsion-free if it has
no elements of finite order. It was a long-standing conjecture
that the units of the group ring of a torsion-free group are
all trivial, meaning of the form kg for k ∈ K and g ∈ G;
a counterexample was given by the author in [1]. Finding
non-trivial units amounts to solving a system of quadratic
equations, which is naturally formulated as an instance of SAT
if one works over K = F2.

II. ENCODING

The submitted benchmarks are a completely naive encoding
of the problem. We enumerate the elements g1, g2, . . . of the
infinite group G according to the shortlex order in some fixed
generating set, for example:

1, x, x−1, y, y−1, x2, xy, xy−1, x−2, . . .

For some n, we consider the first n elements of the group as
candidate support for the group ring elements. We thus have
2n variables defining the two group ring elements

α =
n∑

i=1

aigi,

β =
n∑

j=1

bjgj .

By translation in the group, we can break symmetry and
impose unary clauses a1 and b1, and thus the non-triviality
is simply asserted by the clauses

n∨

i=2

ai and
n∨

j=2

bj .

We introduce the n2 auxiliary variables cij := ai∧bj to encode
the products and then impose the XOR clause

⊕

i,j such that
gi·gj=gk

cij =

{
1 if k = 1

0 else

for each group element gk. These equations say precisely that
αβ = 1 in K[G]. Technically, we also require βα = 1 for
α and β to be units, but this extra condition is known to be
redundant for all but the most exotic groups. Each XOR is,
as is common practice, cut into smaller XORs on at most
` = 4 variables (by introducing auxiliary variables), each of
which is then encoded by 2`−1 CNF clauses. The longest
sum has length n or thereabouts; the statistics of the other
lengths depends a lot on the specific group considered. For
the submitted benchmarks, the average length ranges between
10 and 22 and is approximately 13 for the mid-sized problems.

III. EXAMPLES

The specific groups in the benchmarks are the virtually
abelian Hantzsche–Wendt group

P = 〈x, y | y−1x2y = x−2, x−1y2x = y−2 〉
used in [1] and the virtually nilpotent group

S = 〈x, y |x−1y2xy2, x−2yx−2y3 〉
introduced by Soelberg [2]. For each group we include the
largest unsatisfiable instance and the smallest satisfiable in-
stance, as well as those problem sizes rounded down or up
respectively to a ball in the Cayley graph of the group (a
natural sequence of values of n to attempt), in this case
corresponding to all words of length at most 4 or at most
5 in the generators. The values of n for P are 83, 92, 93, 147
and for S they are 109, 158, 159 and 223.

REFERENCES

[1] G. Gardam, “A counterexample to the unit conjecture for group rings,”
Ann. of Math., vol. 194, pp. 967–979, November 2021.

[2] L. Soelberg, “Finding torsion-free groups which do not have the unique
product property,” Master’s thesis, Brigham Young University, 2018.
Available: https://scholarsarchive.byu.edu/etd/6932.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

65

Description of CEC Benchmarks
Junhua Huang

Xiamen University, China
Hui-Ling Zhen, Wanqian Luo, Mingxuan Yuan

Noah’s Ark Lab, Huawei, China

Abstract—All these benchmarks are from Combinational
Equivalence Checking (CEC).

I. INTRODUCTION

CEC problem is from the problem of checking the equiv-
alence of combinational circuits is of key significance in the
verification of digital circuits [1]. It is one of the most widely
used technologies in the verification of digital circuits. During
synthesis process, a register-transfer level (RTL) description,
given in e.g. VHDL or given as a set of boolean expression,
is translated into a gate-level description.

II. ENCODING

The transformation is followed standard way.
• To make the CNF relatively hard to solve, we make some

modifications on the circuit, like hash table and rewrite.
• To make some instance from UNSAT to SAT, we also

consider to add certain bugs in some of instance.
• Random shuffling operation is also applied, in order to

further increase the complexity of generated CNFs, which
includes variable permutation, clause permutation and
polarity flip.

Random shuffling operation is also applied, in order to
further increase the complexity of generated CNFs, which
includes variable permutation, clause permutation and polarity
flip. In details, the variable permutation is to change the
occurring order of original variables within each clause; and
the clause permutation is to change the occurring order of
clause within the CNF but the order of variables within each
clause remains the same. The polarity flip is to randomly flip
the polarity of literals of CNF.

REFERENCES

[1] Evguenii I Goldberg, Mukul R Prasad, and Robert K Brayton. Using
sat for combinational equivalence checking. In Proceedings Design,
Automation and Test in Europe. Conference and Exhibition 2001, pages
114–121. IEEE, 2001.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

66

Benchmarks encoding logical equivalence checking
for sorting algorithms

Ilya Otpuschennikov, Alexander Semenov, Victor Kondratiev, Daniil Chivilikhin, Stepan Kochemazov∗
∗ Email: veinamond@gmail.com

Abstract—This document describes the benchmarks encoding
logic equivalence checking of different algorithms for sorting
integer numbers which were submitted to SAT Competition 2022.

I. INTRODUCTION

Logic equivalence checking (LEC) [1] is a well-known
application of SAT solvers. We consider the problem of
proving that the outputs of two algorithms for sorting (the
same) l d-bit natural numbers are equivalent. It is clear, that as
long as the encodings of the sorting algorithms are correct, the
corresponding LEC instances are unsatisfiable. While it may
seem that the corresponding problems pose no value (since
we can usually formally prove for each sorting algorithm that
it is correct), they can serve as a good source of unsatisfiable
benchmarks with scalable difficulty for SAT solvers.

II. FORMAL DESCRIPTION

Consider two Boolean circuits S1 and S2 over a complete
basis, e.g. {¬,∧}. Assume that both circuits have n inputs and
m outputs, thus defining functions

f1, f2 : {0, 1}n → {0, 1}m

The goal is to prove that f1 ∼= f2 (here by ∼= we mean
pointwise equality). Then the circuits S1 and S2 are equivalent
(S1
∼= S2). A well known fact is that this problem can be

efficiently reduced to SAT for CNF C such that S1
∼= S2 iff

C is unsatisfiable. CNF C is constructed from circuits S1, S2

using Tseitin transformations [2].
In the provided benchmarks we considered circuits S1,

S2 that represent two different algorithms for sorting l d-bit
natural numbers. In the role of sorting algorithms we used
bubble sorting, selection sorting, insertion sorting and pancake
sorting. To construct the SAT encodings we employed the
Transalg tool [3].

The attractive feature of this approach to construction of
unsatisfiable benchmarks lies in the fact that by varying sorting
algorithms to compare and the values of l and d we can
produce the benchmarks with almost any desired difficulty.

III. INSTANCE NAMING SCHEME

The benchmarks follow the simple naming convention:

Alg1vsAlg2Sort l d.cnf

where Alg1, Alg2 ∈ {Bubble, Pancake, Insert, Selection},
l is the number of input natural numbers to sort, and d is the
number of bits per input number.

IV. COMMENTS

We submit 32 benchmarks, all of them unsatisfiable. They
correspond to different combinations of aforementioned sort-
ing algorithms with varying values of l and d.

Overall trend is that given the same two algorithms, for the
same l the increase of d by 1 results in the increase of the
runtime of a solver by ≈ 2 times. For the same d the increase
of l by 1 results in ≈ 10 times runtime increase.

To evaluate the hardness of submitted benchmarks we used
Kissat_sc2021_default with the time limit of 1 hour
on a PC with AMD Ryzen 9 3950x. Within the time limit it
solved 24 benchmarks with runtime from 5 to 3400 seconds.
The MiniSat 2.2 runtime on these benchmarks is several
times larger on average.

REFERENCES

[1] A. Kuehlmann and F. Krohm, “Equivalence checking using cuts
and heaps,” in DAC 97, 1997, p. 263–268. [Online]. Available:
https://doi.org/10.1145/266021.266090

[2] G. S. Tseitin, “On the complexity of derivation in propositional calculus,”
Studies in Constructive Mathematics and Mathematical Logic, Part II,
Seminars in mathematics,, pp. 115–125, 1970.

[3] A. Semenov, I. Otpuschennikov, I. Gribanova, O. Zaikin, and S. Kochema-
zov, “Translation of algorithmic description of discrete functions to
sat with application to cryptanalysis problems,” Logical Methods in
Computer Science, vol. 16, p. 29:1–29:42, 2020.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

67

Sports Timetabling SAT Benchmarks
Martin Mariusz Lester

Department of Computer Science
University of Reading

Reading, United Kingdom
m.lester@reading.ac.uk
0000-0002-2323-1771

Abstract—This benchmark consists of SAT encodings of sports
timetabling problems for time-constrained double round robin
(2RR) tournaments. The majority of instances are based on
problems from the International Timetabling Competition 2021
(ITC 2021), but there are are also some more abstract instances
based on achieving tight bounds on the number of breaks.

I. INTRODUCTION

A sports tournament timetable for n teams over s slots
lists each pair of teams that will play in each slot. This
benchmark encodes the problem of finding a timetable for a
time-constrained double round robin tournament. This means
that: each team plays exactly once in each round; and each
team plays against every other team exactly twice, once
“home” at the team’s own stadium, and once “away” the the
opposing team’s stadium. Thus s = 2(n− 1) = 2n− 2.

A break occurs when the team plays 2 consecutive games
at home or 2 consecutive games away. It is often desirable to
minimise the number of breaks in a tournament, as they have
been shown to disadvantage the affected teams. For the type
of tournament we consider, the minimum number of breaks is
2(n− 2) [1], [2].

This kind of tournament or league is extremely common in
reality. However, real-world tournament design problems often
come with a wide range of further constraints that must also
be satisfied, for example requiring that certain games or sets
of games must be timetabled at the same time or at different
times.

II. ITC 2021

The International Timetabling Competition 2021 (ITC
2021) [3], [4] concerned this kind of problem. Problem in-
stances were supplied by the organisers in the XML-based
RobinX format [5], expressing a mixture of hard and soft
constraints. The goal for entrants was to develop a solver
that could produce solutions satisfying all hard constraints and
minimising the sum of costs of violated soft constraints.

Our entry to the competition, Reprobate [6], [7], used an
encoding of sports timetabling problems into pseudoboolean
(PB) constraints, which we solved using PB solvers such as
clasp [8]. This approach was not competitive in terms of
quality of solution when compared with other entries, most of
which used a custom local search or commercial Mixed Integer
Programming (MIP) solvers such as Gurobi and CPLEX.
However, it did find feasible solutions to the majority of

problems in under 10 minutes, which was much faster than
the commercial solvers on an equivalent MIP encoding.

III. ENCODING

Our encoding uses decision variables Mt1,t2,s, which are
true just if team t1 plays home against team t2 in slot s. Each
team must play exactly once in each slot:

∀s, t1.
∑

t2
(Mt1,t2,s +Mt2,t1,s) = 1

and each home/away match-up between two teams must occur
exactly once:

∀t1, t2.
∑

s Mt1,t2,s = 1

Auxiliary variables are used to help encode other con-
straints, including those on the number of breaks.

IV. INSTANCES

To produce this benchmark, we used Reprobate to generate
PB encodings of RobinX format sports timetabling problems,
excluding any soft constraints. Then we used pbencoder from
pblib [9] to translate these into SAT instances.

We split the benchmarks into:
• easy — solvable with MiniSAT 2.2.1 in under 1 minute;
• medium — solvable with clasp 3.3.5 on crafty preset in

under 1 hour; and
• hard — not solvable with clasp in under 1 hour.

All timings are for an Intel i5-7500 CPU running at 3.40GHz.
The benchmark suite contains encodings of all instances

from the ITC 2021, including test instances. These instances
do not correspond to any specific real-world sports tourna-
ments. They were generated to test the performance of RobinX
solvers on a range of different combinations of constraints. (23
easy, 11 medium, 19 hard.)

The suite also contains encodings of instances generated
specifically for the SAT competition with only one constraint
beyond being a time-constrained double round robin. These
instances range from 4 to 20 teams. There are 3 variations:

1) The number of breaks must be at most k(n − 2), for
k ∈ [2, 5]. For k = 2, this is the minimal number of
breaks. (24 easy, 1 medium, 11 hard.)

2) The number of breaks must be at most k(n − 2), for
k ∈ [2, 5]. Furthermore, there must be no sequences of 3
consecutive slots containing breaks; Horbach and others

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

68

found this extra constraint improved performance in a
SAT formulation of break minimisation [1]. (19 easy, 8
medium, 9 hard.)

3) The number of breaks must be at most k(n − 2) − 1.
Unlike all the other instances, these are unsatisfiable. (2
easy, 1 medium, 6 hard.)

While one would probably expect the tighter bound on
the number of breaks to be harder to satisfy, note that for
single round robin tournaments, the problem of allocating to
an otherwise fixed timetable a home/away pattern with n− 2
breaks is solvable in polynomial time [10], but conjectured to
be NP-complete in general [11]. So it is conceivable that the
tighter bound is easier.

REFERENCES

[1] A. Horbach, T. Bartsch, and D. Briskorn, “Using a sat-solver to
schedule sports leagues,” J. Sched., vol. 15, no. 1, pp. 117–125, 2012.
[Online]. Available: https://doi.org/10.1007/s10951-010-0194-9

[2] D. de Werra, “Geography, games and graphs,” Discret. Appl.
Math., vol. 2, no. 4, pp. 327–337, 1980. [Online]. Available:
https://doi.org/10.1016/0166-218X(80)90028-1

[3] D. Van Bulck, D. R. Goossens, J. Beliën, and M. Davari,
“The Fifth International Timetabling Competition (ITC 2021):
Sports timetabling,” in Proceedings of MathSport International
2021 Conference, 2021, pp. 117–122. [Online]. Available: http:
//www.mathsportinternational.com/MathSport2021Proceedings.pdf

[4] ——, “Itc2021 — sports timetabling problem description and file
format,” 2020. [Online]. Available: https://www.sportscheduling.ugent.
be/ITC2021/images/OrganizationITC2021 V7.pdf

[5] D. Van Bulck, D. R. Goossens, J. Schönberger, and M. Guajardo,
“RobinX: A three-field classification and unified data format for round-
robin sports timetabling,” Eur. J. Oper. Res., vol. 280, no. 2, pp. 568–580,
2020. [Online]. Available: https://doi.org/10.1016/j.ejor.2019.07.023

[6] M. M. Lester, “Reprobate at itc 2021,” in Proceedings of
the 13th International Conference on the Practice and Theory
of Automated Timetabling-PATAT, vol. 2, 2021. [Online]. Avail-
able: http://www.patatconference.org/patat2020/proceedings/papers/42.
ITC2021 paper8.pdf

[7] ——, “Reprobate: Pseudoboolean Optimisation for RobinX Sports
Timetabling,” Jul. 2021. [Online]. Available: https://doi.org/10.5281/
zenodo.5084254

[8] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, “clasp :
A conflict-driven answer set solver,” in Logic Programming and
Nonmonotonic Reasoning, 9th International Conference, LPNMR 2007,
Tempe, AZ, USA, May 15-17, 2007, Proceedings, ser. Lecture Notes
in Computer Science, C. Baral, G. Brewka, and J. S. Schlipf,
Eds., vol. 4483. Springer, 2007, pp. 260–265. [Online]. Available:
https://doi.org/10.1007/978-3-540-72200-7 23

[9] T. Philipp and P. Steinke, “Pblib – a library for encoding pseudo-boolean
constraints into cnf,” in Theory and Applications of Satisfiability Testing
– SAT 2015, ser. Lecture Notes in Computer Science, M. Heule and
S. Weaver, Eds. Springer International Publishing, 2015, vol. 9340,
pp. 9–16.

[10] R. Miyashiro and T. Matsui, “A polynomial-time algorithm to find an
equitable home-away assignment,” Oper. Res. Lett., vol. 33, no. 3, pp.
235–241, 2005. [Online]. Available: https://doi.org/10.1016/j.orl.2004.
06.004

[11] M. Elf, M. Jünger, and G. Rinaldi, “Minimizing breaks by maximizing
cuts,” Oper. Res. Lett., vol. 31, no. 3, pp. 343–349, 2003. [Online].
Available: https://doi.org/10.1016/S0167-6377(03)00025-7

69

Solving Summle.net With SAT
Norbert Manthey

nmanthey@conp-solutions.com
Dresden, Germany

I. INTRODUCTION

The simple math puzzle Summle is presented on https:
//summle.net/. Given a target number X , and available input
numbers, the goal is to combine the inputs with the math
operations addition, subtraction, multiplication and division.
Each input, and intermediate results, can be used exactly once.
The task is to place the numbers and operations so that the
target number is the result of an operation.

1001

=

=

=

=

=

2 2 4 5

8 8 25

In

in the given example, the input numbers 2, 2, 4, 5, 8, 8, 25 have
to be placed in the empty input boxes (first and third column).
Each input can be used at most once. Intermediate results can
be used in operations once as well. The allowed operations
are addition, subtraction, multiplication and division. The
goal is to obtain the value we search for – 1001 – as an
intermediate result. 1

II. CONVERTING SUMMLE TO SAT

Similarly to puzzles like Sudoku, the math puzzle could be
converted to a logic, and a reasoner could be applied to a direct
translation. To assess the reasoning strength of other tools as
well, we chose a different route.

The solution for a given SUMMLE puzzle is encoded in the
C programming language. The goal number and input numbers

1The given example has a solution, happy hunting.

are represented by integer variables. For each position in the
puzzle grid, an array of integers stores the position of the
selected input number or intermediate result. Similarly, the
operations used for the each calculation is selected and stored
in an array. These two arrays, together with the number of
given steps, form the search space of the puzzle.

The rest of the program verifies whether the chosen position
selection and operations result in (1) valid calculations, and
(2) that a calculation reaches the goal in a given number of
steps. The exit code of the program should indicate whether
a solution has been found, or not. This property is useful
when using the program in combination with tools that try to
generate input to crash the program. Only if a valid solution
is reached, an assertion is triggered in the program, otherwise,
the program terminates or aborts as usual. As assertions are
typically not used in release binaries, we implemented the exit
code for a valid solution to be the same as when triggering
the assertion. Otherwise, the exit code of the binary will be
zero.

The values for the selected-position-array and operations are
not defined. Instead, these values are initialized from stdin.
This allows tools like fuzzers to select place the numbers and
operators in the puzzle and validate the result via the exit code.

Instead of a fuzzer, the bounded model checker CBMC [1]
can be used to find a solution. CBMC finds a solution
by trying to break the assertion, which is CBMC’s default
behavior. Additionally, CBMC can emit the formula in con-
junctive normal form, which would be solved by the internal
SAT solver. We use this feature to generate the submitted
benchmark.

The default setup of CBMC take a few seconds to solve
the problems presented on the web page of summle. To find
more challenging, and unsatisfiable, problems, we extended
the number of input numbers, use greater goal values, and
experiment with the number of possible steps.

A. Symmetries in Puzzle

The puzzle provides many symmetries. Addition and multi-
plication are commutative, so that for each of these operations
at least two solutions exist. Symmetry-breaking additions to
enforce one operand being less-equal to the other have not
been added.

The order of calculations can be mixed, as the only require-
ment is to calculate intermediate results before the result is
needed. Any earlier calculation could be used, multiplying the
number of solutions further. No constraints to use intermediate
results as late as possible, or similar, have been added.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

70

III. USING CBMC TO SOLVE SUMMLE

The input file main.c has a single assertion. This assertion
can only be reached and falsified if the placed numbers in
the puzzle describe a valid solution to the puzzle. Hence, this
assertion can be targeted by CBMC.

The board to solve has to be defined via compile time
parameters. The example puzzle can be solved with the below
command. To quickly spot the solution to the problem, you
should filter the output for the lines that print the result of the
calculation.

cbmc --property main.assertion.1
--trace --trace-hex
--object-bits 16
--unwind 10 --depth 2000

-DTYPE="unsigned short"
-DGOAL=1001
-DINPUTS=2,2,4,5,8,8,25
-DSTEPS=5

main.c

Besides specifying the properties of the input problem, the
call shows that we currently use 16 bits to represent numbers
– by using the unsigned short data type. The difficulty
can be increased by lifting this format to 32 or even 64 bits.
Furthermore, the number of loop unwinding and execution
path depth are limited. With the used input number of steps
and input values, these parameters have been good enough to
cover the whole program.

IV. AVAILABILITY

The source of the tool is publicly available under the MIT li-
cense at https://github.com/conp-solutions/summle-solver. The
repository also contains a script to generate a first set of not
too simple benchmarks.

Note: CBMC can also produce the SMT format. We did not
compare the performance of SAT solvers on the CNF files to
SMT solvers on the SMT format.

REFERENCES

[1] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2004), ser. Lecture Notes in Computer Science,
K. Jensen and A. Podelski, Eds., vol. 2988. Springer, 2004, pp. 168–176.

71

Verifying Linked List Safety Properties in AWS
C99 Package with CBMC

Muhammad Osama and Anton Wijs
Department of Mathematics and Computer Science

Eindhoven University of Technology, Eindhoven, The Netherlands
{o.m.m.muhammad, a.j.wijs}@tue.nl

Abstract—In this paper, state-of-the-art proofs are generated
with harness using the CBMC bounded model checker for the
Amazon Web Services C99 core package. In this submission,
we check the safety properties of the Linked List swap-contents
routine with various loop unwinding settings as opposed to
the String compare submitted last year. The generated proof
has proven to be reasonably hard to solve using modern SAT
solvers. It has many variable-clause redundancies which are not
only challenging for a SAT solver but also useful to assess the
performance of different simplification techniques.

I. INTRODUCTION

Bounded Model Checking (BMC) [1]–[3] determines
whether a model M satisfies a certain property φ expressed in
temporal logic, by translating the model checking problem to
a propositional satisfiability (SAT) problem or a Satisfiability
Modulo Theories (SMT) problem. The term bounded refers to
the fact that the BMC procedure searches for a counterexample
to the property, i.e., an execution trace, which is bounded in
length by an integer k. If no counterexample up to this length
exists, k can be increased and BMC can be applied again.
This process can continue until a counterexample has been
found, a user-defined threshold has been reached, or it can be
concluded (via k-induction [2]) that increasing k further will
not result in finding a counterexample. CBMC [4], [5] is an
example of a successful BMC model checker that uses SAT
solving. CBMC can check ANSI-C programs. The verification
is performed by unwinding the loops in the program under
verification a finite number of times, and checking whether the
bounded executions of the program satisfy a particular safety
property [6]. These properties may address common program
errors, such as null-pointer exceptions and array out-of-bound
accesses, and user-provided assertions.

II. BENCHMARKS

In this paper, we are interested in verifying the safety
properties of the swap-contents routine implemented in the
Linked List data structure of the Amazon Web Services (AWS)
C99 core package. The proof covers the following:
• Memory allocation failure and access violations
• Pointer/floating-point overflow
• Data types conversion

We generated 30 different formulas using a loop unwinding
upper-bound in the range [40, 80], with an iincremental step.
These bounds produce SAT formulas with 100% coverage of

all functionalities. All problems are written in this format:
linked_list_swap_contents_safety_unwind<x>
where x denotes the unwinding value. The first and the last
formulas are solved via MiniSat [7] within 90 and 540 seconds
respectively on a machine with AMD EPYC 7H12 64-Core
processor operating at base clock of 2.6 GHz. The solving time
of the rest of the benchmarks are expected to be monotonically
increasing.

REFERENCES

[1] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic Model
Checking without BDDs,” in Proc. of TACAS (Mar. 1999), Amsterdam,
The Netherlands, ser. LNCS, vol. 1579. Springer, 1999, pp. 193–207.

[2] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
model checking,” Advances in Computers, vol. 58, pp. 117–148, 2003.

[3] M. Osama and A. Wijs, “GPU Acceleration of Bounded Model Checking
with ParaFROST,” in Proc. of CAV (Jul. 2021), USA, ser. LNCS, vol.
12760. Springer, 2021, pp. 447–460.

[4] E. M. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking ANSI-C
Programs,” in Proc. of TACAS (Mar. 2004), Barcelona, Spain, ser. LNCS,
vol. 2988. Springer, 2004, pp. 168–176.

[5] D. Kroening and M. Tautschnig, “CBMC - C Bounded Model Checker
- (Competition Contribution),” in Proc. of TACAS (Apr. 2014), Grenoble,
France, ser. LNCS, vol. 8413. Springer, 2014, pp. 389–391.

[6] D. Kroening and O. Strichman, Decision Procedures - An Algorithmic
Point of View, Second Edition, ser. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2016.

[7] N. Eén and N. Sörensson, “An Extensible SAT-solver,” in Proc. of
SAT (May 2003) Santa Margherita Ligure, Italy, ser. LNCS, vol. 2919.
Springer, 2003, pp. 502–518.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

72

SAT-X Unsolved Problems Benchmarks
1st Oscar Riveros
Santiago, Chile

oscar.riveros@gmail.com

Abstract—A set of unsolved and recent solved problems bench-
marks for SAT Competition 2022, this problemas are created
with SAT-X python library https://github.com/maxtuno/SATX,
that is a solver free advanced version of PEQNP python library
presented on SAT Competition 2021 [1].

I. INTRODUCTION

To solve some problems like the sum of three cubes for 33,
42, or 3 (large representation), a large amount of computing
power was required, then is very interesting try to solve this
with SAT Solvers.

II. METHODS

A. Descriptions of problems

1) 3D perfect Euler briks:
• a2 + b2 = p2

• a2 + c2 = q2

• b2 + c2 = r2

• a2 + b2 + c2 = s2

2) 4D Euler briks:
• a2 + b2 = p2

• a2 + c2 = q2

• b2 + c2 = r2

• a2 + d2 = s2

• b2 + d2 = t2

• c2 + d2 = u2

3) 4D perfect Euler bricks:
• a2 + b2 = p2

• a2 + c2 = q2

• b2 + c2 = r2

• a2 + d2 = s2

• b2 + d2 = t2

• c2 + d2 = u2

• a2 + b2 + c2 + d2 = v2

4) Brocard’s problem: n! + 1 = m2, n > 7, This problem
is presented on 16, 32 bits format.

5) H31 - The smallest (in H) open equation [2]: y(x3 −
y) = z3 + 3, This problem is presented on 80 and 128, 256
bits format.

6) Sum of three cubes: x3 + y3 + z3 == k, k ∈
{3, 33, 42, 165, 906, 114, 390, 579, 627, 633, 732, 921, 975},
This problem is for known solutions for 3, 33, 42, to compare
with large scale computation needed to solve, and search
for unknown solutions over actual solutions. For un solved
values is presented on 3 ∗ 80 and 3 ∗ 128 bits format.

REFERENCES

[1] Balyo , T , Froleyks , N , Heule , M , Iser , M , Järvisalo , M
Suda , M (eds) 2021 , Proceedings of SAT Competition 2021 : Solver
and Benchmark Descriptions . Department of Computer Science Report
Series B , vol. B-2021-1 , Department of Computer Science, University
of Helsinki , Helsinki .

[2] Grechuk, B. (2021). Diophantine equations: a systematic approach.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

73

Two Types of N-bits Inputs Multiplier Circuits Are

Transformed to CNF

 1st Shunyang Bi, 2nd Hailong You

School of Microelectronics

XiDian University

Xi’an China

shybi@stu.xidian.edu.cn,

hlyou@mail.xidian.edu.cn

Abstract—this description introduces our instances for the

SAT Competition 2022. We generated instances that would

select some circuits which are consisted of the n-bits inputs

Carry-Save multiplier.

I. DATA

In the design of the n-bits multiplier, two multiplier types
are widely applied in ordinary circuits: the Carry-Save
multiplier and the Wallace-tree multiplier. For these two basic
types of multipliers, the circuit first forms all the products ai *
bj where ai is a digit from the first number factor and bj is a
digit from the second factor. The products are then added, but
each multiplier circuit differs in the details of how the sum is
done.

In the carry-save circuit, row i of the circuit adds the
product from row i (ai * b*) with the sum and carry (shifted
one column) to obtain a new sum and a new carry. A special
adder is used to add the final sum and final carry. The products
from the first row must go through a linear number of adders
to get to the special adder.

In the Wallace-tree circuit, the rows (with appropriate
shifts) are added in groups of three to produce sums and
carries. The sums and carries (with appropriate shifts) are
again added in groups of three, and this is repeated until there
is just one sum and one carry. Then a special adder is used to
add the final sum and the final carry. The products from any
row need to go through only a logarithmic number of adders
before they get to the special adder.

II. SELECTION

The fast adder is an adder with log time complexity[1].
Whether the input of a designed multiplier circuit can be
transformed into the CNF format based on the fast algorithm
is very important for our circuit verification. We select some
hard n-bits multipliers in the testing of the circuits and

transform them into CNF format. TABLE Ⅰ shows the

running time of 20 instances in Minisat.

TABLE I. RESULTS WITH MINISAT FOR 20 INSTANCES SUBMITTED

FOR SAT COMPETITION-2022.

Instance name Minisat Time(s) Status

Carry_Save_Fast_1.cnf 5000 UNKNOWN

Carry_Save_Fast_2.cnf 5000 UNKNOWN

Carry_Save_Fast_3.cnf 5000 UNKNOWN

Carry_Save_Bits_3.cnf 101.888 SAT

Carry_Save_Bits_4.cnf 690.465 SAT

Carry_Save_Bits_5.cnf 5000 UNKNOWN

Carry_Save_Bits_8.cnf 5000 UNKNOWN

Carry_Save_Bits_12.cnf 367.49 SAT

Carry_Save_Bits_16.cnf 5000 UNKNOWN

Carry_Save_Bits_18.cnf 457.12 SAT

Carry_Save_Bits_19.cnf 1123.15 SAT

Carry_Save_Bits_23.cnf 4379.81 SAT

Wallace_ Save_Bits_1.cnf 5000 UNKNOWN

Wallace_ Save_Bits_2.cnf 247.39 SAT

Wallace_ Save_Bits_3.cnf 5000 UNKNOWN

Wallace_ Save_Bits_4.cnf 4320.78 SAT

Wallace_ Save_Bits_5.cnf
1783.81 SAT

Wallace_ Save_Bits_6.cnf
870.72 SAT

Wallace_ Save_Bits_7.cnf
5000 UNKNOWN

Wallace_ Save_Bits_8.cnf
5000 UNKNOWN

III. TOOLS

We used CNF Generator for Factoring Problems to assist
in transforming the multiplier of the circuits and generating
the CNF formulas.

REFERENCES

[1] Aho and Ullman, “Foundations of Computer Science” 1992.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

74

Time-indexed encoding of Multi-mode RCPSP
1st Jordi Coll

Aix Marseille Univ, Université de Toulon,
CNRS, LIS, Marseille, France

jordi.coll@lis-lab.fr

2nd Shuolin Li
Aix Marseille Univ, Université de Toulon

CNRS, LIS, Marseille, France
shuolin.li@etu.univ-amu.fr

3rd Chu-Min Li
Université de Picardie Jules Verne

Amiens, France
Aix Marseille Univ, Université de Toulon

CNRS, LIS, Marseille, France
chu-min.li@u-picardie.fr

4th Felip Manyà
Artificial Intelligence Research Institute

CSIC,Bellaterra, Spain
felip@iiia.csic.es

5th Djamal Habet
Aix Marseille Univ, Université de Toulon

CNRS, LIS, Marseille, France
Djamal.Habet@univ-amu.fr

Abstract—The proposed benchmarks are CNF encodings of
the The Multi-mode Resource-Constrained Project Scheduling
Problem (MRCPSP), obtained with Savile Row from a time-
indexed model written in the Essence Prime constraint modelling
language.

I. PROBLEM DESCRIPTION

The Multi-mode Resource-Constrained Project Scheduling
Problem (MRCPSP) [1] is an iconic scheduling problem with
many industrial applications that has drawn a high research
interest in the last decades, both for exact solving and approx-
imate solving. The problem consists in finding a schedule with
minimum makespan (total duration) for a project involving a
finite set of activities A, and a finite set of renewable resources
R and non-renewable resources N with limited capacity. Each
activity has a set M of execution modes available, and the
duration and resource requirements of each activity depend
on the selected mode. A solution must determine, for each
activity i ∈ A, an integer start time Si and an execution mode
Oi. Four main constraints appear in this problem:

• Single mode selection: exactly one execution mode must
be selected for each activity.

• Precedence relations: there are predefined end-start
precedence relations between pairs of activities (i, j),
meaning that activity j cannot start until activity i has
ended.

• Renewable resource constraints: at any time instant, the
sum of the demands on a renewable resource by activities
that are running cannot surpass the capacity of that
resource.

• Non-renewable resource constraints: the sum of demands
on a non-renewable resource cannot surpass the capacity
of that resource. The difference w.r.t. renewable resources
is that the non-renewable are consumed, while the re-
newable are only occupied during the execution of the
activities, and the resources recover the capacity used by
an activity when this activity finishes.

The proposed benchmarks encode the decision version of MR-
CPSP, where the goal is to find a schedule whose makespan

is not bigger than a given upper bound. The decision version
of MRCPSP is NP-complete.

II. MODEL DESCRIPTION

The CNF benchmarks are a subset of the CNF encodings
of the decision version of the MRCPSP that were used
in [2]. These formulas have been generated from the constraint
model written in Essence Prime language from [3], which
are encoded into CNF using the Savile Row reformulation
tool [4]. The Essence Prime constraint model contains four
main kinds of variables with finite domain: integer variable
jobStarti specifies the start time of activity i; integer variable
modei specifies the selected execution mode for activity i;
integer variable durationi specifies the duration of activity i
according to the selected execution mode; Boolean variable
jobActivei,o,t is true iff activity i is running at time t (i.e.
it has started but not finished), and in mode o. With these
variables the single mode selection requirement is trivially
satisfied, and the precedence relations between pairs of ac-
tivities (i, j) are modelled with expressions of the form
jobStarti + durationi ≤ jobStartj . The dominating part
of the model are the resource constraints, which are expressed
as pseudo-Boolean (PB) constraints. In particular, renewable
resource constraints are expressed as:

∑

i∈A,o∈M

usagei,o,r · jobActivei,o,t ≤ capacityr

for all time instants t up to a large enough horizon, and for
every renewable resource r ∈ R. Similarly, non-renewable
resource constraints are expressed as:

∑

i∈A,o∈M

usagei,o,r · (modei = o) ≤ capacityr

for every non-renewable resource r ∈ N . This kind of formu-
lation is usually referred to as time-indexed formulation, since
variables stating whether an activity is running are introduced
for each time instant to express renewable resource constraints.
Time-indexed formulations have shown to be state-of-the-art
for MRCPSP exact solving [5].

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

75

III. CNF DESCRIPTION

In the CNF formulas generated by Savile Row, the integer
variables have been translated to Boolean variables by means
of direct and order encodings, and a number of clauses is
introduced to enforce the consistency between these encod-
ings. The single mode selection constraint has been enforced
by the direct encoding of modei. The precedence relations
jobStarti + durationi ≤ jobStartj have been translated
into ternary clauses over the Boolean variables from the
order encodings of jobStarti,durationi and jobStartj . Most
of the clauses of the CNF formulas come from the CNF
encodings of PB resource constraints, which also introduce
a number of auxiliary variables. The provided benchmark set
considers three different techniques from [2], [6] to encode
PB constraints into SAT: GMTO, MDD and RGGT.

We select 5 of the hardest MRCPSP instances of the j30
benchmark set [7]. These instances contain 30 activities, 3
execution modes per activity, 2 renewable resources and 2 non-
renewable resources. The upper bounds of the makespan are
bigger than 40, hence the CNF formulase contain encodings
of more than 2 ∗ 40 = 80 PB renewable resource constraints.
Each PB constraint involves a maximum of 3 ∗ 30 = 90
jobActive variables. Each MRCPSP instance is encoded a
total of 6 times, thus having a total of 30 CNF formulas. The
6 encodings are the combinations of choosing one of the 3
PB encoding techniques, and 2 different upper bounds of the
makespan: the best known value (always satisfiable), and the
best minus 1 (unsatisfiable for the certified instances).

REFERENCES

[1] P. Brucker, A. Drexl, R. Möhring, K. Neumann, and E. Pesch, “Resource-
constrained project scheduling: Notation, classification, models, and
methods,” European journal of operational research, vol. 112, no. 1, pp.
3–41, 1999.

[2] M. Bofill, J. Coll, P. Nightingale, J. Suy, F. Ulrich-Oltean, and M. Villaret,
“SAT encodings for pseudo-boolean constraints together with at-most-one
constraints,” Artificial Intelligence, vol. 302, p. 103604, 2022.

[3] C. Ansótegui, M. Bofill, J. Coll, N. Dang, J. L. Esteban, I. Miguel,
P. Nightingale, A. Z. Salamon, J. Suy, and M. Villaret, “Automatic detec-
tion of at-most-one and exactly-one relations for improved SAT encodings
of pseudo-boolean constraints,” in Principles and Practice of Constraint
Programming - 25th International Conference, CP 2019, Proceedings,
ser. Lecture Notes in Computer Science, vol. 11802. Springer, 2019, pp.
20–36.

[4] P. Nightingale, Ö. Akgün, I. P. Gent, C. Jefferson, I. Miguel, and
P. Spracklen, “Automatically improving constraint models in savile row,”
Artificial Intelligence, vol. 251, pp. 35–61, 2017.

[5] M. Bofill, J. Coll, J. Suy, and M. Villaret, “SMT encodings for resource-
constrained project scheduling problems,” Computers & Industrial Engi-
neering, vol. 149, p. 106777, 2020.

[6] ——, “An mdd-based SAT encoding for pseudo-boolean constraints with
at-most-one relations,” Artificial Intelligence Review, vol. 53, no. 7, pp.
5157–5188, 2020.

[7] R. Kolisch and A. Sprecher, “Psplib-a project scheduling problem library:
Or software-orsep operations research software exchange program,” Eu-
ropean journal of operational research, vol. 96, no. 1, pp. 205–216, 1997.

76

Circuit Model Checking with BMC

Xindi Zhang, Zhihan Chen, Shaowei Cai

1State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
2School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China

{zhangxd,caisw,chenzh}@ios.ac.cn

I. Introduction
With the increasing scale of integrated circuits, it be-

comes more and more difficult to verify the correctness of
hardware in the application. We notice that there are gaps
between real-world applications and SAT Competition in-
stances in that the mathematical problems account for the
vast majority of the latter one. Thus, we submit 5 instances
that are generated by Bounded Model Checking (BMC)
aiming at checking the safety properties of hardware.

II. BMC Encoding for Circuits
Hardware Model Checking (HMC) is an automatic

technique to decide whether a given circuit satisfies a
given specification [3]. Current HMC is usually based on
the Kripke structure which is a variation of the transition
system and formalized as a finite-state transition system
M =< V, I, T, P >, where V, I, T, P stand for the states,
initial states, transition relation between states, and the
property each state holds. The state machine M is
usually encoded into the CNF, which can be handled
by SAT solvers. Each state of M can be formalized as
some propositional variables. The inital state I(V), the
translation relationship T (V1, V2) between two states V1

and V2 and the property P (V) for a state V can be encoded
into some propositional clauses. The combinational circuit
gates of the given hardware design can be encoded into
SAT according to Tseitin’s transformation [5]. For example
an AND gate O = AND(I1, I2) can be encoded into
(¬I1 ∨ ¬I2 ∨ C) ∧ (I1 ∨ ¬O) ∧ (I2 ∨ ¬O), and a NOT gate
O = NOT (I) can be encoded into (¬O∨¬I)∧(I∨O). The
states in M are variable assignments according to certain
time stamps, and the latches or memory gates form the
translation relations between adjacent time stamps.

BMC is a popular symbolic model checking algorithm
for checking whether a property P can be violated in k
steps [1]. A common practice for BMC solvers is to include
an incremental SAT solver and iteratively use them as
their core engine. The success of BMC lies in its ability
to find counter-example. In each call, BMC tries to search
for a counter-example within a given bounded limitation
kmax. If a counter-example is found with step k, BMC
returns the counter-example path. Else, the algorithm
increases the step k by 1 until reaches the given maximum
bound kmax.

TABLE I
Selected instances submitted to SAT Competition 2022

Index Name
1 bmc_QICE_req_sfl_30.cnf
2 bmc_QICE_req_vld_30.cnf
3 bmc_QICE_rxrsp_vld_30.cnf
4 bmc_QICE_snp_vld_30.cnf
5 bmc_QICE_snp_vld_50.cnf

The formula for checking for counter-examples of length
k can be built as follows.

F k ≡ I(V 0) ∧ Trans(V 0, V k) ∧ (¬P (V k)) (1)

We use V t to stand for the state of timestamp t, and use

Trans(V i, V j) = T (V i, V i+1) ∧ ... ∧ T (V j−1, V j) (2)

where 0 ≤ i < j, to represent the translation path with
length j − i + 1.

A. Benchmark Selection
We select 5 benchmarks from real hardware applications

according to different bounds to check certain safety
properties, which are shown in I. The instances are
‘interesting’, which are not too easy, and can be solved
by our improved versions of the participants of SC21 [2],
[4].

References
[1] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model

checking without bdds. In International conference on tools and
algorithms for the construction and analysis of systems, pages
193–207. Springer, 1999.

[2] S. Cai and X. Zhang. Deep cooperation of cdcl and local search
for sat. In International Conference on Theory and Applications
of Satisfiability Testing, pages 64–81. Springer, 2021.

[3] E. M. Clarke, T. A. Henzinger, H. Veith, R. Bloem, et al.
Handbook of model checking, volume 10. Springer, 2018.

[4] A. B. K. F. M. Fleury and M. Heisinger. Cadical, kissat, para-
cooba, plingeling and treengeling entering the sat competition
2020. SAT COMPETITION 2020, page 50, 2020.

[5] G. S. Tseitin. On the complexity of derivation in propositional
calculus. In Automation of reasoning, pages 466–483. Springer,
1983.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

77

Factory Worker Dispatching problem

Xindi Zhang, Zhihan Chen, Shaowei Cai

1State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
2School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China

{zhangxd,caisw,chenzh}@ios.ac.cn

Abstract—In this document, we describe a real-world prob-
lem that many factories dispatch workers to cooperate on a
joint task, and introduce a modeling scheme. We encode some
randomly generated problems into Conjunctive Normal Form
(CNF) and submit 15 instances to SAT Competition 2022 1.

I. Introduction
In reality, it usually happens that different companies

or teams need to arrange for workers to cooperate on the
same task, which is referred to as Worker Dispatching
Problem (WDP) in this document. WDP is a decision
problem that decides whether there is a feasible dispatch-
ing solution under given constraints, and the solution
should be given when the answer is ‘YES’. The WDP
can be seen as a special case of the Timetable Scheduling
Problem [1] or Job Scheduling Problem [2]. The WDP
can be encoded into the SAT problem naturally, in
this document, we introduce the modeling and encoding
method for WDP.

II. The Worker Dispatching Problem
Let us consider a scenario where n factories {F1, ..., Fn}

cooperate on a project. For factory Fi, there are ki workers
that can be dispatched for this joint task, denoted by
Wi = {W 1

i , ..., W ki
i }. We use W =

∪
1≤i≤n

∪
1≤j≤ki

W j
i to

represent the set of all workers that can be dispatched in
the n factories. Due to the limitation of human resources,
each factory Fi can dispatch at most Mi workers for this
cooperation. In this document, we only consider a special
case that Mi = 1. The joint project contains m jobs,
denoted as J = {j1, ..., jm}. According to the personal
skills, each worker w ∈ W is capable of a subset of jobs
Jw ⊆ J , but can only be assigned to at most one job in
Jw. Each job can be done if at least one worker is assigned
to it.

The WDP problem asks whether there is a feasible
dispatching solution.

III. An Encoding Method
In this section, we assume readers are familiar

with CNF. We use cardinality constraints at-most-one
(AMO) in convenience for the expression, and the
AMO(x1, x2, ..., xq) constraints are encoded pairwise as

1The generator can be found in GitHub https://github.com/
iHaN-o/Worker-instance-generator.

TABLE I
Selected instances submitted to SAT Competition 2022

Name #F #W #J PR
worker_20_40_20_0.95.cnf 20 40 20 0.95
worker_20_60_20_0.9.cnf 20 60 20 0.9
worker_20_80_20_0.85.cnf 20 80 20 0.85
worker_30_60_25_0.9.cnf 30 60 25 0.9
worker_30_90_30_0.8.cnf 30 90 30 0.8
worker_30_120_30_0.8.cnf 30 120 30 0.8
worker_40_40_30_0.9.cnf 40 40 30 0.9
worker_40_80_35_0.85.cnf 40 80 35 0.85
worker_40_80_40_0.85.cnf 40 80 40 0.85
worker_50_100_40_0.95.cnf 50 100 40 0.95
worker_50_150_40_0.85.cnf 50 150 40 0.85
worker_50_50_30_0.8.cnf 50 50 30 0.8
worker_80_80_80_0.8.cnf 80 80 80 0.8
worker_550_550_550_0.3.cnf 550 550 550 0.3
worker_600_600_600_0.27.cnf 600 600 600 0.27

∧
1≤i<j≤q(¬xi ∨ ¬xj). The variable A(w, j) represents

assigning worker w to job j.
There are |W | · |m| variables for this encoding method.
• Every job needs to be handled by at least one worker.

∧

1≤i≤m

(∨

w∈W

A(w, Ji)
)

(1)

• Each factory can dispatch at most one worker, and
each worker can be assigned at most one job.

∧

1≤i≤n

AMO(
∪

w∈Wi

AMO(
∪

j∈Jw

A(w, j))) (2)

Note that, the encoding method is simplified by neglect-
ing variables A(w, j) that represent impossible arrange-
ments.

IV. Benchmark selection

We submit 15 ‘interesting’ benchmarks for SAT Com-
petition 2022, which cannot be solved by minisat within 1
minute, consisting of 13 unsatisfiable instances and 2 sat-
isfiable instances. The 15 instances are described in Table
I. The #F, #W and #J represent the number of factories,
workers and jobs for a WDP instance, respectively. PR
presents the probability of a worker can do a job.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

78

References
[1] H. Alghamdi, T. Alsubait, H. Alhakami, and A. Baz. A review of

optimization algorithms for university timetable scheduling. En-
gineering, Technology & Applied Science Research, 10(6):6410–
6417, 2020.

[2] A. Arisha, P. Young, and M. El Baradie. Job shop scheduling
problem: an overview. In International Conference for Flexible
Automation and Intelligent Manufacturing (FAIM 01), pages
682–693, 2001.

79

Equivalence Checking of EPFL Benchmarks
Xinyan Chen‡, Wenxuan Guo‡, Wanqian Luo†, Hui-Ling Zhen†,

Xijun Li†, Mingxuan Yuan† and Junchi Yan‡
†Huawei Noah’s Ark Lab

‡Shanghai Jiao Tong University
{luowanqian1, zhenhuiling2, xijun.li, Yuan.Mingxuan}@huawei.com

{moss chen, arya g, yanjunchi}@sjtu.edu.cn

Abstract—To participate in SAT Competition 2022, we present
an approach to generate CNFs via SAT encoding for circuit
equivalence checking instances of EPFL Benchmarks.

I. INTRODUCTION

Circuit equivalence checking is to check whether two given
circuits are equivalent in terms of function. Assume we have
two circuits, i.e., golden circuit and implementation design
circuit, needs to be checked. Note that the implementation
design circuit is obtained by optimizing the golden circuit and
the number of input gates of the two circuits is equal. A miter
circuit is firstly constructed by connecting the output gates of
above two circuits to a group of exclusive-OR (XOR) gates,
as shown in Fig. 1. If the output of one of these XOR gates
can be assigned to true, a certificate is found which shows
that the two circuits are not equivalent. Otherwise, the circuits
are equivalent, which means that the implementation circuit is
valid optimization of golden circuit.

Fig. 1. Construction of miter circuits. A miter circuit is constructed by
connecting the output gates of golden circuit and of implementation circuit
to a group of exclusive-OR (XOR) gates.

The problem whether the output of miter circuit can be
assigned to true can be equally converted into a Boolean Satis-
fiability (SAT) problem. Specifically, the Tseytin Encoding [1]
is utilized to converted the miter circuit into corresponding
CNF. And an unit clause of XOR is appended to the CNF.
Similarly, the equivalence checking of multi-output circuits
can be converted to multiple SAT problems.

II. GENERATION PROCEDURE

The circuit data come from the public dataset of EPFL
benchmarks [2] of which all circuits are combinatorial cir-
cuits. EPFL benchmark includes three sub benchmarks, i.e.,
Arithmetic benchmark, Random/Control benchmark and More
than ten Miliong gates (MtM) benchmark. Here we adopt the

Arithmetic benchmark in our generation procedure. In details,
the golden circuits are provided by EPFL as baseline data and
implementation circuits are selected from best LUT-6 results
of historical submissions.

We firstly use ‘miter’ command of ABC [3] to extract miter
circuits. Then the golden circuits and implementation circuits
involved in above miter circuits are extracted in the manner of
depth first search (DFS). Finally, we use ‘write cnf’ command
line to convert the above circuits to CNFs.

III. BENCHMARKS

We submitted 20 benchmarks generated by the mentioned-
above procedure. All benchmarks meet the requirement of
benchmark submissions. In detail, we tested MiniSat Solver
over the submitted benchmarks. The average solving time is
around 578.55 seconds. All benchmarks are unsatisifiable. All
tests were performed on Intel(R) Xeon(R) Platinum 8180M
CPU@2.50GHz.

REFERENCES

[1] https://en.wikipedia.org/wiki/Tseytin transformation
[2] Amarù, Luca Gaetano et al. “The EPFL Combinational Benchmark

Suite.” (2015).
[3] R. K. Brayton and A. Mishchenko, “Abc: An academic industrial-

strength verification tool,” in CAV, ser. Lecture Notes in Computer
Science, T. Touili, B. Cook, and P. Jackson, Eds., vol. 6174. Springer,
2010, pp. 24–40.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

80

The SAT Encoding for Graph Isomorphism
Yang Li‡, Yuqi Jia‡, Wanqian Luo†, Hui-ling Zhen†,

Xijun Li†, Mingxuan Yuan† and Junchi Yan‡
†Huawei Noah’s Ark Lab

‡Shanghai Jiao Tong University
{luowanqian1, zhenhuiling2, xijun.li, Yuan.Mingxuan}@huawei.com

{yanglily, jiayuqi001023, yanjunchi}@sjtu.edu.cn

Abstract—To participate in SAT Competition 2022, we present
an approach to generate CNF via SAT encoding for graph iso-
morphism problem. The generated CNF consists of three classes,
including SAT encoding based on basic graph isomorphism, SAT
encoding based on transformed graph isomorphism and the ones
obtained by random shuffling the first two classes.

I. INTRODUCTION

Graph Isomorphism (GI) problem is to check whether two
given graphs are equivalent in terms of structure, which is one
of the most studied topics in the field of complexity theory.
There are a series of efficient algorithms to solve GI problem,
such as nauty, traces [1], bliss [2], conauto [3], saucy [6],
etc. Besides, the GI problem can be transformed into Boolean
Satisfiability problem [6] and solved by calling SAT solvers.
In this benchmark, we generate a group of hard SAT instances
by transforming some of the public complex GI problems [6]
into SAT encodings. The details of the generation procedure
are presented in the following.

II. GENERATION PROCEDURE

The raw data of graph isomorphism can be obtained from
the public benchmark of [1]. The public GI benchmark mainly
includes six groups of data which are of ‘dimacs’ format. The
six groups of GI data fall into two categories, i.e., isomorphic
and non-isomorphic. Among the six groups of data, cfi-rigid-
r2 and cfi-rigid-t2 are isomorphic. The rest of them are non-
isomorphic. All problems come mostly from research in Proof
Complexity, such as pigeonhole principle, ordering principle
and k-clique. Most problems are structured. Our CNFs are
obtained by transforming from the above GI problems.

In order to raise the computing complexity of the generated
CNFs, some transformations are applied over these generated
CNFs. Firstly, we apply OR transformation over the CNFs
obtained from CNFgen. In detail, we transform a CNF by
substituting each variable with the original disjunction of three
new variables. Considering the following CNF as an example.

(¬X ∨ Y) ∧ (¬Z) (1)

We substitute X with X1, X2 and X3. The similar substi-
tution is also applied on Y and Z. In this way, a new CNF

can be obtained as follows:

(¬X1 ∨ Y1 ∨ Y2 ∨ Y3)∧
(¬X2 ∨ Y1 ∨ Y2 ∨ Y3)∧
(¬X3 ∨ Y1 ∨ Y2 ∨ Y3)∧
(¬Z1) ∧ (¬Z2) ∧ (¬Z3)

(2)

Note that the number of variable substitutions in our transfor-
mation is set as two and three.

Then, on top of the above CNF, a random shuffling opera-
tion is applied to further increase the complexity of generated
CNFs, which includes variable permutation, clause permuta-
tion and polarity flip. In detail, the variable permutation is to
change the occurring order of original variables within each
clause; and the clause permutation is to change the occurring
order of clause within the CNF but the order of variables
within each clause remains the same. The polarity flip is to
randomly flip the polarity of literals of CNF.

III. BENCHMARKS

We submitted 20 benchmarks generated by the mentioned-
above procedure. All benchmarks meet the requirement of
benchmark submissions. In detail, we tested MiniSat Solver
over the submitted benchmarks. The average solving time
is around 566 seconds. Among these benchmarks, eight of
them are satisfiable and 12 of them are unsatisfiable. All
tests were performed on Intel(R) Xeon(R) Platinum 8180M
CPU@2.50GHz.

REFERENCES

[1] B. D. McKay and A. Piperno. Practical graph isomorphism, II. J. Symb.
Comput., 60:94–112, 2014.

[2] T. Junttila and P. Kaski. Engineering an efficient canonical labeling tool
for large and sparse graphs. In Proceedings of the Ninth Workshop on
Algorithm Engineering and Experiments and the Fourth Workshop on
Analytic Algorithms and Combinatorics, pages 135–149. SIAM, 2007.

[3] J. L. López-Presa, A. F. Anta, and L. N. Chiroque. Conauto-2.0:
Fast isomorphism testing and automorphism group computation. CoRR,
abs/1108.1060, 2011.

[4] P. Codenotti, H. Katebi, K. A. Sakallah, and I. L. Markov. Conflict
analysis and branching heuristics in the search for graph automorphisms.
In 2013 IEEE 25th International Conference on Tools with Artificial
Intelligence, Herndon, VA, USA, November 4-6, 2013, pages 907–914.

[5] Neuen D, Schweitzer P. Benchmark graphs for practical graph isomor-
phism[J]. arXiv preprint arXiv:1705.03686, 2017.

[6] Torán J. On the resolution complexity of graph non-
isomorphism[C]//International Conference on Theory and Applications
of Satisfiability Testing. Springer, Berlin, Heidelberg, 2013: 52-66.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

81

Set Covering with Conflict Benchmarks
Jiongzhi Zheng1 Kun He1 Zhuo Chen1 Jianrong Zhou1 Chu-Min Li2

1School of Computer Science and Technology,
Huazhong University of Science and Technology, China

2MIS, Université de Picardie Jules Verne, France

I. INTRODUCTION

We propose a new variant of the well-known set covering
problem [1], called set covering problem with conflict (SCPC),
and generate 20 SAT instances by transforming 20 SCPC
instances.

II. THE SET COVERING PROBLEM WITH CONFLICT

Given a set of items S = {s1, ..., sm} and a set of elements
E = {e1, ..., en}, where each item covers a subset of E and
each element ej (j ∈ {1, ..., n} has a positive weight wj , a
conflict graph G = (V,E′) where the node set V consists of
all the items in S, an edge (si, sj) belonging to E′ indicates
that items si and sj are conflict with each other. The goal of
SCPC is to find a subset S′ ⊂ S that any two items in S′ are
not conflict, and the total weight of the covered elements is
maximized.

III. TRANSFORMING SCPC INTO SAT
Firstly, a Weighted Partial MaxSAT [2] instance can be

generated by a SCPC instance as follows. We use each item si
to represent a variable vi, each element ej that covered by k
items {sj1, ..., sjk} to represent a soft clause with weight wj

that consists of the positive literal of variables {vj1, ..., vjk}.
We further use each pair of conflict items sa and sb to generate
a hard clause, which consists of the negative literal of va and

vb. Once a SCPC instance I is generated, we first use a local
search method to obtain a feasible solution S′ (S′ ⊂ S), then
we traverse each uncovered element three times to make it
covered by a random item in S′ with a probability of 0.8
and obtain a new instance I ′. Finally, we transform I ′ into a
MaxSAT instance F by the above method, and regard all the
soft clauses in F as hard to obtain a SAT instance.

IV. BENCHMARKS

To generate each SCPC instance, we set the density of the
conflict graph to 0.1, the number of items to 500, and the
number of elements to 3000, each element is covered by 20
items on average. We generate 20 random SCPC instances
with the above settings, and transform them into 20 SAT
instances by the aforementioned method.

All the instances are UNSAT. Each of the 20 instances can
be solved by Kissat-MAB, the champion of the main track of
SAT Competition 2021, within 600 seconds on a server using
an Intel® Xeon® E5-2650 v3 2.30 GHz 10-core CPU, running
Ubuntu 16.04 Linux operation system.

REFERENCES

[1] E. Balas, M. W. Padberg, “On the set-covering problem,” Oper. Res.,
vol. 20(6), pp. 1152-1161, 1972.

[2] J. Zheng, K. He, J. Zhou, Y. Jin, C. M. Li, F. Manyà, “BandMaxSAT: A
Local Search MaxSAT Solver with Multi-armed Bandit,” IJCAI 2022.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

82

Sudoku Clue Generation Problem Instances
Zhenjiang Zhao∗, Takahisa Toda∗, Takashi Kitamura†

∗Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
{zhenjiang, toda}@disc.lab.uec.ac.jp

†National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
t.kitamura@aist.go.jp

Abstract—We describe CNF formulas that are encoded from
Sudoku clue generation problem instances.

I. INTRODUCTION

A Sudoku puzzle often has a regular pattern in the ar-
rangement of initial digits, as depicted in the center grid of
Fig. 1, and it is typically made solvable with known solving
techniques called strategies. The sudoku clue generation [1] is
the problem of determining digits (called clues) in given cells
so that the grid can be completed by applying only prescribed
strategies.

In Fig. 1, the Sudoku clue generation instance is specified
by the gray cells, and suppose that only naked single, one of
the most basic strategies, is allowed to be used. Here, naked
single means that one can safely place n in cell (i, j) if no
other candidate but n remains at (i, j). For instance, take a
look at cell (4, 2) in the center grid. We can observe that 8, 9, 2
are present in the same row, 6, 7, 3 is in the same column, and
1, 4 is in the same block, all of which implies that all that
remains is 5.

In this setup, the output (solution) of the Sudoku clue
generation is given in the center grid. Indeed, all empty cells
in the grid can be filled by applying naked single only and
the right grid will be finally obtained. Note that the solution
of the current Sudoku clue generation is not the right grid but
the center grid; the right grid is the solution when considering
the center grid as ”Sudoku instance”.

II. BENCHMARK INSTANCES

The submitted benchmark instances consists of the 30
Sudoku clue generation instances listed in Table I. These
instances are encoded by sgc modeler [2]. As shown in the
second column, grids with clue positions marked are repre-
sented as strings of zeros and asterisks; zeros denote empty
cells and asterisks denote positions in which clues should be
placed. In these instances, only naked singe is allowed to be
used. These grids are obtained from some minimum Sudokus
in the collection of Gordon F. Royle.

All the instances are confirmed to be unsatisfiable. The
times required are shown in the third column of Table I. The
computational environment is as follows. OS: Ubuntu 20.04.4
LTSCPU: Intel® Xeon® E5-2609 (1.70GHz), Main Memory:
32GB. SAT Solver: CaDiCaL 1.5.0 [3].

REFERENCES

[1] K. Nishikawa and T. Toda, “Exact method for generating strategy-
solvable sudoku clues,” Algorithms, vol. 13, no. 7, 2020. [Online].
Available: https://www.mdpi.com/1999-4893/13/7/171

[2] T. Toda, “Scg modeler,” https://github.com/toda-lab/scg, accessed: 2012-
04-29.

[3] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020,” in Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, ser. Department of Computer Science Report Series B,
T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda,
Eds., vol. B-2020-1. University of Helsinki, 2020, pp. 51–53.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, 2022.

83

Fig. 1. Clue positions (left), initial Sudoku grid (center), and the solution (right)

TABLE I
SUDOKU GRIDS AND THE RUNNING TIMES (IN SECONDS): EACH GRID IS REPRESENTED BY A STRING OF ZEROS AND ASTERISKS DELIMITED BY THE

PERIOD, WITH EACH DELIMITED SUBSTRING INDICATING A ROW OF THE GRID.

Index Grid Time (s)
1 0*0*00000.0000*0*00.0000000*0.0*0000*00.000*0*000.0000**000.000*00*0*.*0*000000.*00000000 2,834
2 0*0*0*000.*000000*0.000000000.000*00*0*.*00*00*00.*00000000.0**000000.0000*00*0.0000*0000 422
3 000*00**0.*0*000000.000*00000.0*00*00*0.00000**00.*000*0000.0*0*00000.0000*0*00.000000000 15,536
4 00*0000*0.000**0000.000000000.*00000*0*.00**00000.000000*00.000*0*0*0.0*00*0000.**0000000 5,104
5 0**000000.000*0000*.000000*00.*000**000.0000*00*0.*00000000.000*00*00.0*00000*0.*00*00000 423
6 0000000**.000*0*000.0*0000000.*0*000*00.0000*0000.000000*00.0*0**0000.*00000**0.000*00000 428
7 *00*00*00.0000000*0.000000000.000000***.0*00**000.000000000.*0*000*00.000**0000.*00*00000 43,148
8 0000*0*00.0*00000*0.0000*0000.*00*000*0.00000*000.00*000000.**0*00000.000*00*0*.000000*00 5,073
9 000**0*00.*00*00000.*00000000.*000**000.000000**0.000000000.0*0*0*000.0000000**.0*0000000 502

10 0*00*00*0.*00*00*00.000000000.*00*0*000.*000000**.000*00000.00*000*00.0*00*0000.000000000 17,839
11 000*00**0.*0*000000.000*00000.000000*0*.0*0*00000.000000*00.*000**000.0*00*00*0.000000000 5,103
12 *0*00*0*0.000*00*00.*00000000.0*00*0*00.00000*000.000*00000.0*0**0000.0000000**.000000000 428
13 0000*000*.00**00000.*00000000.**000*000.000*00**0.*00000000.00*000**0.0*00*0000.000000000 5,287
14 *00*00000.000000*0*.00*000*00.000*00**0.**0000000.000*00000.*000000*0.0000**000.0000*0000 824
15 0*00**000.0000*0*00.000000000.0*000000*.000*000*0.*00*00000.*0*000*00.*00*00000.0000*0000 493
16 *000000**.0000**000.000000000.000**000*.*00000*00.0**000000.**0*00000.000000**0.000000000 4,670
17 0*0**0000.0*000000*.0000000*0.0*0*00*00.*000*0000.00000*000.*0*000000.000*00*00.*00000000 744
18 *000*0*0*.0*0*00000.*00000000.**00000*0.00000*000.0000*0000.000*000*0.000*00*00.00*000000 5,468
19 *000*0000.0*00000*0.000000000.000*00**0.*0**00000.00*000000.000*00*00.0*000*000.*0000000* 10,824
20 00*000*00.*000*0000.000*000*0.0000**000.0*00000*0.000*00000.**0*00000.000000*0*.000000*00 4,859
21 0*0000*00.0000**000.0000*0000.000*00*00.*0*000000.*0000000*.000**0000.*000000*0.000*000*0 741
22 0*0000*00.000*000*0.*000*0000.0**0000*0.000*000*0.0000*0000.*00000*0*.00000*000.000000*00 495
23 *000*00**.*0000000*.000*000*0.0*0*00000.0000*0*00.0*0000000.*00000*00.000**0000.000000000 17,018
24 *0*0*0*00.000*00000.*00000000.0*00000**.0000**000.000000000.**0*00000.000000**0.00000000* 491
25 0*0000*00.0000**000.0000*0*00.*000000*0.0*0*00000.0000*0000.000*00*00.*0*000000.*00*00000 5,300
26 *000*0000.000*00*00.000000*00.0000**0*0.00*000000.0*0000000.**00000*0.00000***0.000*00000 326
27 0000***00.*000000*0.000000000.*00*00000.000000*0*.000000**0.0**000000.000**0000.0*0*00000 297
28 *00*00000.0000*0*00.0000000*0.0**000*00.0*0000*00.000*0000*.*00*0000*.0000*00*0.000000000 304
29 *00*00000.0000000**.00000000*.000*0**00.*0*000000.*00*00000.0*0000*00.0000*00*0.0*0000000 4,825
30 00*0000*0.*00*00000.000*000*0.*00000*00.0000*0000.000*00000.00000**0*.**0000000.0*0000*00 21,215

84

Solver Index

BreakID-kissat, 12
BreakID-kissat-WithUNSATCertificates,

12

CaDiCal-DVDL, 41
CaDiCaL-HyWalk, 20
CaDiCal-watch-sat, 28
Cadical_ESA, 33
cadical_hack_gb, 16
CadicalReorder , 22

DPS-Kissat, 43

ekissat_mab_be-v1, 16
ekissat_mab_be-v2, 16

Gimsatul, 10

hCaD, 24
hKis, 24

IsaSAT, 10
ITMO-ParSAT, 44

Kissat, 10
Kissat-ELS, 18
Kissat-Inc, 37
Kissat-MAB-rephasing, 35
Kissat-Pre, 37
Kissat-watch-sat, 28
Kissat_Adaptive_Restart, 39
Kissat_Cfexp, 39
Kissat_MAB, 14
Kissat_MAB-HyWalk, 20
Kissat_MAB_ESA, 33
kissat_mab_gb, 16
kissat_mab_gb_be, 16
Kissat_relaxed, 35

LSTech-CaDiCaL, 37
LSTech-Kissat, 37
LSTech-Maple, 37
LStech-Maple-BandSAT, 20
LStech-Maple-FPS, 20
LStech-Maple-HyWalk, 20

Mallob, 46
Mallob-MergeCadLing, 25

MapleLCMDistChronoBT-DL-v3,
23

Merge-Mallob, 25
MergeSat, 25

P-KISSAT-MAB, 48
P-MCOMSPS, 49
PaKis, 24
Paracooba, 42
ParKissat, 51
ParKissat-Pre, 37
ParKissat-RS, 37

SeqFROST, 30
SLIME, 32

85

Benchmark Index

ABC-BMC, 63
AWS CBMC, 54

Circuit model checking, 77
Combinational equivalence check-

ing, 66

Equivalence checking of EPFL bench-
marks, 80

Equivalence checking of sorting
algorithms, 67

Factory worker dispatching, 78

Graceful production, 61
Graph isomorphism, 81
Group ring units, 65

Hardware model checking certifi-
cates, 56

Linked list safety property veri-
fication, 72

MaxSAT optimality verification,
59

Minimum disagreement parity, 57
Multi-mode RCPSP, 75
Multipliers, 74

SAT-X unsolved benchmarks, 73
Set covering with conflicts, 82
Sports timetabling, 68
Sudoku clue generation, 83
Summle.net, 70

Unique reconfiguration sequence,
64

86

Author Index

Baarir, Souheib, 48, 49
Bi, Shunyang, 74
Biere, Armin, 10, 56, 64
Bogaerts, Bart, 12
Bryant, Randal E., 57

Cai, Shaowei, 37, 51, 77, 78
Chen, Xinyan, 35, 80
Chen, Zhihan, 37, 51, 77, 78
Chen, Zhuo, 20, 82
Cherif, Mohamed Sami, 14, 59
Chivilikhin, Daniil, 44, 67
Chowdhury, Md Solimul, 16, 61
Coll, Jordi, 33, 75

Djamegni, Clémentin Tayou, 24
Dzhiblavi, Ibragim, 44

Fleury, Mathias, 10, 56
Fofaliya, Ronak, 54
Froleyks, Nils, 56, 64
Fukiage, Tsubasa, 43

Ganesh, Vijay, 49
Gardan, Giles, 65
Geng, Fei, 18, 63
Grundy, Jim, 54
Guo, Wenxuan, 35, 80

Habet, Djamal, 14, 33, 59, 75
He, Kun, 20, 82
Heisinger, Maximilian Levi, 42
Huang, Junhua, 22, 66

Inoue, Katsumi, 43

Jia, Yuqi, 39, 81
Jones, Robert, 54

Khazem, Kareem, 54
Kheireddine, Anissa, 48
Kiesl, Benjamin, 54
Kitamura, Takashi, 41, 83
Kochemazov, Stepan, 23, 44, 67
Kondratiev, Victor, 23, 67

Lester, Martin Mariusz, 68
Li, Chu-Min, 20, 33, 75, 82

Li, Shuolin, 33, 75
Li, Xijun, 80, 81
Li, Yang, 39, 81
Li, Zijun, 39
Lu, Pinyan, 37
Lu, Xiao-Nan, 43
Luo, Mao, 33
Luo, Wanqian, 22, 35, 39, 66, 80,

81

Manthey, Norbert, 25, 28, 70
Manyà, Felip, 33, 75

Nabeshima, Hidetomo, 43
Nakos, Angelo, 54
Nejati, Saeed, 49
Nordström, Jakob, 12

Obitsu, Yuto, 43
Oertel, Andy, 12
Osama, Muhammad, 30, 72
Otpuschennikov, Ilya, 67

Renault, Etienne, 48, 49
Riveros, Oscar, 32, 73

Schreiber, Dominik, 46
Semenov, Alexander, 23, 44, 67
Sopena, Julien, 49

Tautschnig, Michael, 54
Tchinda, Rodrigue Konan, 24
Terrioux, Cyril, 14, 59
Toda, Takahisa, 41, 83

Vallade, Vincent, 49

Whalen, Michael W., 54
Wijs, Anton, 30, 72

Yıldırımoğlu, Çağrı Uluç, 12
Yan, Junchi, 39, 80, 81
Yan, Lei, 18, 63
You, Hailong, 74
Yu, Emily, 56, 64
Yuan, Mingxuan, 22, 39, 66, 80,

81

87

Zaikin, Oleg, 23
Zhang, ShuCheng, 18, 63
Zhang, Xindi, 37, 51, 77, 78
Zhao, Zhenjiang, 41, 83
Zhen, Hui-Ling, 22, 35, 39, 66,

80, 81
Zheng, Jiongzhi, 20, 82
Zhou, Jianrong, 20, 82

88

