
BreakIDGlucose 2
Jo Devriendt

University of Leuven
Leuven, Belgium

Bart Bogaerts
University of Leuven

Leuven, Belgium

Abstract—The defining characteristic of the BreakIDGlucose
2 SAT solving system is the addition of a preprocessing step in
which symmetry breaking clauses are added to the CNF theory.
It is meant to be an improvement on the 12 years old symmetry
breaking preprocessor Shatter.

I. INTRODUCTION

Many real-world problems exhibit symmetry, but the SAT
competition and SAT challenge seldomly feature solvers who
are able to exploit symmetry properties. This discrepancy can
be explained by the assumption that for most of the problems
in these competitions, symmetry exploitation is not worth the
incurred overhead.

Two years ago we tested this hypothesis by submitting
two symmetry breaking SAT solvers to the SAT competition.
The first was ShatterGlucose, a coupling of the symmetry
breaking preprocessor Shatter [1] with Glucose 2.2 [2] (which
belongs to the family of MiniSat-based solvers [3]). The
other was BreakIDGlucose, which instead of Shatter used our
own symmetry breaking preprocessor BreakID [4] specialized
in detecting and breaking row interchangeability symmetry
subgroups from the symmetry group inferred by Saucy [5].

The result was surprising: BreakIDGlucose took the gold
medal in the SAT+UNSAT track, showing that symmetry
breaking is still relevant in today’s SAT competition. However,
BreakID was only a proof of concept, with some unelegant
implementation choices and suboptimal symmetry detection
algorithms. To improve on this, we developed BreakID2, use
version 4.0 of Glucose as backend solver, and will participate
in the 2015 SAT-Race.

II. MAIN TECHNIQUES

The workflow of BreakIDGlucose is straightforward:
1) BreakID2 uses Saucy to detect symmetry on a CNF file,

and adds symmetry breaking clauses to the CNF theory.
2) Glucose 4.0 solves the resulting CNF.

III. MAIN PARAMETERS

The main user-provided parameters control:
• How much time should be allocated to symmetry detec-

tion. For a 3600 second time limit per instance Saucy
gets 300 seconds for symmetry detection. The symmetry
breaking routine then continues with any symmetry de-
tected by Saucy to construct symmetry breaking clauses.

• How large the symmetry breaking sentences are allowed
to grow, measured in the number of auxiliary variables

introduced by a symmetry breaking formula. We limit
this to 100 variables.

IV. SPECIAL ALGORITHMS, DATA STRUCTURES, AND
OTHER FEATURES

The symmetry breaking preprocessor BreakID2 differs from
the original BreakID (dubbed BreakID1 for the remainder of
this text) in three regards:

• A more tightly coupled integration of Saucy into the sym-
metry breaking routine. Saucy source code is integrated
in BreakID2, resulting in a more simple tool chain.

• Row interchangeability symmetry detection is done by
repeated calls to Saucy to construct row-swapping sym-
metries. This is an improvement to the naive symmetry
enumeration approach used by BreakID1.

• BreakID2 constructs special binary symmetry breaking
clauses, which potentially break much symmetry at little
cost.

These improvements come on top of the improvements
made by BreakID1 compared to Shatter:

• Completely breaking any detected row interchangeability
symmetry group.

• Constructing a more suitable variable ordering with
which to break symmetry.

• Using a smaller encoding for the symmetry breaking
clauses.

Lastly, Saucy requires a slightly cleaned CNF as input, so
the BreakID preprocessor also employs a small preprocessing
step:

• Removing duplicate and tautological clauses from the
CNF theory.

V. IMPLEMENTATION DETAILS

BreakID2 was written from scratch in C++. We refer to
the webpages of the other programs for their implementation
details.

VI. ACKNOWLEDGEMENTS

We would like to thank
1) Paul T. Darga, Mark Liffiton and Hadi Katebi for pro-

viding the source code of the symmetry detection tool
Saucy.

2) Laurent Simon and Gilles Audemard for making their
SAT solver Glucose available for use in the 2015 SAT-
Race.



REFERENCES

[1] F. A. Aloul, K. A. Sakallah, and I. L. Markov, “Efficient symmetry
breaking for Boolean satisfiability,” IEEE Transactions on Computers,
vol. 55, no. 5, pp. 549–558, 2006.

[2] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in IJCAI, C. Boutilier, Ed., 2009, pp. 399–404.

[3] N. Eén and N. Sörensson, “An extensible SAT-solver,” in SAT, ser. LNCS,
E. Giunchiglia and A. Tacchella, Eds., vol. 2919. Springer, 2003, pp.
502–518.

[4] J. Devriendt, B. Bogaerts, and M. Bruynooghe, “BreakIDGlucose: On the
importance of row symmetry,” in Proceedings of the Fourth International
Workshop on the Cross-Fertilization Between CSP and SAT (CSPSAT),
2014.

[5] H. Katebi, K. A. Sakallah, and I. L. Markov, “Symmetry and satisfiability:
An update,” in SAT, ser. LNCS, O. Strichman and S. Szeider, Eds., vol.
6175. Springer, 2010, pp. 113–127.


