
Veri�ed LRAT and LPR Proof Checking with

cake_lpr

Yong Kiam Tan Marijn J. H. Heule Magnus O. Myreen

1 Summary

We present the cake_lpr proof checker [2] which is capable of checking proofs in
either Linear RAT (LRAT) or Linear PR (LPR) proof formats.1 The checker is
formally veri�ed using CakeML and the HOL4 theorem prover; its formal proof
is discussed in Tan et al. [2] and brie�y in Section 3. The DRAT and DPR proof
formats are supported using DRAT-trim and DPR-trim as preprocessing tools,
respectively. We also propose to add support for binary DPR, LPR, and LRAT
formats in the relevant tools, following the binary DRAT format.
NOTE: For SAT-COMP usage, please make sure to read Section 4.

1.1 Obtaining the Proof Checker

The proof checker is available at:
https://github.com/tanyongkiam/cake_lpr

The DRAT-trim and DPR-trim tools are available at:
https://github.com/marijnheule/drat-trim

https://github.com/marijnheule/dpr-trim

1.2 Example

An outline of an end-to-end LRAT proof checking run is as follows:

Assume the problem is input.cnf in DIMACS format

... run SAT solver on input.cnf generate input.drat ...

Run drat-trim on the DRAT proof, generate LRAT file

drat-trim input.cnf input.drat -L input.lrat

Run cake_lpr on the resulting LRAT proof

cake_lpr input.cnf input.lrat

If the proof checks successfully, cake_lpr will print to standard output:

s VERIFIED UNSAT

1The LPR format is a backwards-compatible extension of LRAT.

1

https://github.com/tanyongkiam/cake_lpr
https://github.com/marijnheule/drat-trim
https://github.com/marijnheule/dpr-trim

All other error messages (proof checking error, parsing error, out-of-memory
error etc.) will be printed to stderr. Solvers capable of generating LRAT proofs
directly can skip the use of DRAT-trim. End-to-end proof checking for LPR
proofs can be done similarly, using DPR-trim as the preprocessor for DPR proofs.
It is also possible to convert DPR proofs to DRAT, then use DRAT-trim, but
this approach is not recommended as it is signi�cantly slower than checking
DPR (and LPR) proofs directly [2].

2 Supported Proof Formats

Formal descriptions of all proof formats are available in the cited publications [1,
2] and online. We give brief descriptions of the formats with concrete examples.

2.1 DRAT and LRAT

The DRAT format consists of a list of clause addition or deletion steps, one
per line. All lines are terminated by 0. Each added clause must have RAT
redundancy with respect to the current formula.

<CLAUSE> 0

d <CLAUSE> 0

Concrete example:

1 -2 3 0 # Add clause x_1,!x_2,x_3

d 1 2 -3 0 # Del clause x_1,x_2,!x_3

The DRAT-trim tool can be used as a preprocessor to automatically convert
an input DRAT proof to LRAT format. The latter format extends DRAT with
a notion of clause IDs and proof hints for each line. The input CNF is assumed
to be given IDs in ascending order from 1 to n where n is the number of clauses
in the �le. Addition lines in LRAT have the following format, where <ID>

is a positive integer, <IDs> is a list of <ID>, and [...]* denotes 0 or more
repetitions of the enclosed block:

<ID> <CLAUSE> 0 <IDs> [-<ID> <IDs>]* 0

The �rst <ID> is the clause ID to be assigned to <CLAUSE>. If <CLAUSE>

has RAT redundancy, then the �rst literal in the clause is the pivot literal.
The �rst block of <IDs> lists unit propagation steps starting from the blocking
assignment for <CLAUSE>. If <CLAUSE> has RAT redundancy, then this �rst
block is followed by 0 or more -<ID> <IDs> blocks, where -<ID> refers to the
<ID>-th clause in the RAT proof and the corresponding <IDs> indicate unit
propagation steps for that clause.

Deletion steps are written with a list of clause IDs rather than clauses. All
the clauses with IDs in <IDs> are deleted.

2

<ID> d <IDs> 0

Concrete example:

Add clause x_1,!x_2,x_3 at clause ID 15 with RAT on pivot !x_2

15 -2 1 3 0 4 13 7 10 8 -5 78 2 4 -10 41 3 5 0

Del clause IDs 13 14 15 (the ID 16 in front of the line is ignored)

16 d 13 14 15 0

A complexity analysis for the LRAT proof format is given in Cruz-Filipe et al.
[1, Theorem 2], where asymptotically (keeping all parameters constant except
number n of steps in proofs), the complexity is reported as O(n2 log n); cake_-
lpr slightly improves the asymptotic bound to O(n2) because it uses constant-
time rather than logarithmic-time lookup data structures [2]. Empirically, we
have observed that most proofs generated by solvers in the SAT competition are
dominated by simple (non-RAT) steps. In that case, one may expect near-linear
scaling from cake_lpr.

2.2 DPR and LPR

The DPR format extends DRAT so that added clauses are propagation redun-

dant with respect to the current formula. Here, <WITNESS> is a list of literals
which must start with the �rst literal in <CLAUSE>. Note that this is syntacti-
cally backwards compatible with DRAT (when <WITNESS> is empty).

<CLAUSE> <WITNESS> 0

The DPR-trim tool can be used as a preprocessor to automatically convert
an input DPR proof to LPR format. The latter format extends DPR with clause
IDs and proof hints in the same way LRAT extends DRAT. The only syntactic
addition is the optional <WITNESS> after <CLAUSE>.

<ID> <CLAUSE> <WITNESS> 0 <IDs> [-<ID> <IDs>]* 0

The proof checking procedure for LPR is backwards compatible with LRAT,
using <IDs> and [-<ID> <IDs>]* as unit propagation hints for propagation
redundancy [2]. Deletion lines are identical for LPR and LRAT.
Concrete example:

Add clause x_1,!x_2,x_3 at clause ID 15 with PR witness !x_2,x_5

15 -2 1 3 -2 5 0 4 13 7 10 8 -5 78 2 4 -10 41 3 5 0

Del clause IDs 13 14 15 (the ID 16 in front of the line is ignored)

16 d 13 14 15 0

The proof checking procedure and thus the proof checking complexity for
LPR is essentially the same as LRAT, i.e., with O(n2) complexity (assuming all
other parameters are held constant).

3

⊢ cake_lpr_run cl fs mc ms ⇒
machine_sem mc (basis_� cl fs) ms ⊆
extend_with_resource_limit

{ Terminate Success (cake_lpr_io_events cl fs) } ∧
∃ out err .
extract_fs fs (cake_lpr_io_events cl fs) =
Some (add_stdout (add_stderr fs err) out) ∧

if length cl = 2 then
if inFS_fname fs (el 1 cl) then
case parse_dimacs (all_lines fs (el 1 cl)) of
None ⇒ out = ��

| Some fml ⇒ out = concat (print_dimacs fml)
else out = ��

else if length cl = 3 then
if out = �s VERIFIED UNSAT\n� then
inFS_fname fs (el 1 cl) ∧
∃ fml .
parse_dimacs (all_lines fs (el 1 cl)) = Some fml ∧
unsatis�able (interp fml)

else out = ��
else . . .

} (1)}
(2)}
(3)

(4)

Figure 1: The end-to-end correctness theorem for the CakeML LPR proof
checker. (Some irrelevant cases are elided with . . . for brevity).

3 Proof Checker Veri�cation

Our proof checker, cake_lpr, is formally veri�ed down to the level of its x64 ma-
chine code implementation, which eliminates the possibility of bugs arising from,
e.g., compiler errors, code extraction, or other, unveri�ed additions to (veri�ed)
source code. This is achieved by compiling its formally veri�ed CakeML source
code implementation, with a formally veri�ed compiler for CakeML [2].

The key correctness theorem is shown in Fig. 1. To informally summarize:

� Line (1) assumes that the cake_lpr binary is executed in an x64 machine
environment set up according to the standard CakeML assumptions.

� Lines (2) guarantees that cake_lpr will terminate successfully (i.e., no
out of bounds array accesses, etc.); it may run out of either heap or stack
memory (resource limits).

� Lines (3) says that, according to the CakeML �le system model, there will
be some strings printed to standard output and standard error.

� Lines (4) says (among other things) that, IF the string �s VERIFIED
UNSAT� is printed onto standard output, then the �rst command line

4

argument corresponds to a �le, which parsed in DIMACS format, to a
formula that is unsatis�able. This DIMACS parser is also veri�ed to be
left inverse to our DIMACS printer.

4 Advanced Compilation Instructions

CakeML is an end-to-end veri�ed programming language. Its veri�ed runtime
manages its own heap and stack space, including garbage collection. The heap
and stack space for cake_lpr is con�gured at compile time, and the default is
set at 4GB each in order to support easy usage on personal computers. This
setting can be found in basis_ffi.c:

unsigned long cml_heap_sz = 4096 * sz; // Default: 4 GB heap

unsigned long cml_stack_sz = 4096 * sz; // Default: 4 GB stack

If a su�ciently powerful machine is available, e.g., during the SAT

competition, we recommend changing the memory limits to support

the high memory requirements of certain input problems as follows:

unsigned long cml_heap_sz = 65536 * sz; // Default: 64 GB heap

unsigned long cml_stack_sz = 16384 * sz; // Default: 16 GB stack

Please remember to recompile cake_lpr after the modi�cation.

References

[1] Luís Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann,
and Peter Schneider-Kamp. E�cient certi�ed RAT veri�cation. In Leonardo
de Moura, editor, CADE, volume 10395 of LNCS, pages 220�236. Springer,
2017. doi: 10.1007/978-3-319-63046-5_14.

[2] Yong Kiam Tan, Marijn J. H. Heule, and Magnus O. Myreen. cake_lpr:
Veri�ed propagation redundancy checking in CakeML. In Jan Friso Groote
and Kim Guldstrand Larsen, editors, TACAS, volume 12652 of LNCS, pages
223�241. Springer, 2021. doi: 10.1007/978-3-030-72013-1_12.

5

	Summary
	Obtaining the Proof Checker
	Example

	Supported Proof Formats
	DRAT and LRAT
	DPR and LPR

	Proof Checker Verification
	Advanced Compilation Instructions

