
GRAT: a formally verified (UN)SAT proof checker
Proof Checker Proposal

Peter Lammich
FMT Group, EEMCS department

University of Twente
Enschede, The Netherlands

p.lammich@utwente.nl 0000-0003-3576-0504

Abstract—We propose the GRAT proof checker toolchain as a
verified proof checker suitable for SAT competitions. It accepts
proofs in the DRAT format, and is verified down to a functional
implementation in Standard ML. On benchmarks drawn from
recent SAT competitions, it’s performance is similar to that of
drat-trim.

I. INTRODUCTION

The GRAT toolchain accepts DRAT (ASCII and binary
format) as input. The result is formally verified with Is-
abelle/HOL, down to the integer sequence representing the
formula. The trusted code base of the verification is Is-
abelle/HOL’s kernel and code generator, compilation and
running of the extracted Standard ML code with MLton, and
a thin command line wrapper and formula parser written in
Standard ML.

Our tool chain follows a two step approach, with a highly
optimized but unverified first step, and a formally verified sec-
ond step. As the first step only acts as certificate preprocessor,
it is not part of the trusted code base.

On a set of benchmarks drawn from the 2016 and 2017
SAT competitions, our full toolchain performed faster than
the unverified (then state-of-the-art) tool drat-trim. We have
confirmed that our tool is still usable for modern SAT com-
petitions, by testing it on benchmarks from the 2022 SAT
competition.

A detailed description can be found in [2], [3] and [4]. Here,
we briefly summarize the main aspects, and report on the new
set of benchmarks.

GRAT’s webpage is https://www21.in.tum.de/∼lammich/
grat/, and the project is maintained as part of the IsaFOL
repository https://bitbucket.org/isafol/isafol/src/master/GRAT/.

Download and build instructions are on the webpage.

II. PROOF FORMAT

Our toolchain supports the de-facto standard DRAT-format
as input [5].

This is then processed by the unverified gratgen tool,
which produces a certificate enriched with unit propagation
information, in the GRAT-format. The GRAT certificate and
the original formula is then passed to the verified gratchk
tool, which either confirms unsatisfiability of the formula by
printing the status line s VERIFIED UNSAT, or yields an error.

In the following, we sketch the GRAT-format.

Each clause is identified by a unique positive ID. The
clauses of the original formula implicitly get the IDs 1 . . . N .
The lemma IDs explicitly occur in the certificate.

For memory efficiency reasons, we store the certificate in
two parts: The lemma file contains the lemmas, and is stored
in DIMACS format. During certificate checking, this part is
entirely loaded into memory. The proof file contains the hints
and instructions for the certificate checker. It is not completely
loaded into memory but only streamed during checking.

The proof file is a binary file, containing a sequence (stored
in reverse order) of 32 bit signed integers in 2’s complement
little endian format. The sequence is interpreted according to
the following grammar:
proof ::= rat-counts item* conflict
literal ::= int32 != 0
id ::= int32 > 0
count ::= int32 > 0
rat-counts ::= 6 (literal count)* 0
item ::= uprop | del | rup-lem | rat-lem
uprop ::= 1 id* 0
del ::= 2 id* 0
rup-lem ::= 3 id id* 0 id
rat-lem ::= 4 literal id id* 0 cand-prf* 0
cand-prf ::= id id* 0 id
conflict ::= 5 id

The checker maintains a clause map that maps IDs to
clauses, and a partial assignment that maps variables to true,
false, or undecided. Partial assignments are extended to literals
in the natural way. Initially, the clause map contains the clauses
of the original formula, and the partial assignment maps all
variables to undecided. Then, the checker iterates over the
items of the proof, processing each item as follows:

• rat-counts This item contains a list of pairs of literals
and the count how often they are used in RAT proofs.
This map allows the checker to maintain lists of RAT
candidates for the relevant literals, instead of gathering
the possible RAT candidates by iterating over the whole
clause database for each RAT proof, which is expensive.
Literals that are not used in RAT proofs at all do not
occur in the list. This item is the first item of the proof.

• uprop For each listed clause ID, the corresponding
clause is checked to be unit, and the unit literal is
assigned to true. Here, a clause is unit if the unit literal
is undecided, and all other literals are assigned to false.

• del The specified IDs are removed from the clause map.

https://www21.in.tum.de/~lammich/grat/
https://www21.in.tum.de/~lammich/grat/
https://bitbucket.org/isafol/isafol/src/master/GRAT/

• rup-lem The item specifies the ID for the new lemma,
which is the next unprocessed lemma from the lemma
file, a list of unit clause IDs, and a conflict clause ID.
First, the literals of the lemma are assigned to false.
The lemma must not be blocked, i.e. none of its literals
may be already assigned to true1. Note that assigning the
literals of a clause C to false is equivalent to adding the
conjunct ¬C to the formula. Second, the unit clauses are
checked and the corresponding unit literals are assigned
to true. Third, it is checked that the conflict clause ID
actually identifies a conflict clause, i.e. that all its literals
are assigned to false. Finally, the lemma is added to the
clause-map and the assignment is rolled back to the state
before checking of the item started.

• rat-lemma The item specifies a pivot literal l, an ID
for the lemma, an initial list of unit clause IDs, and a list
of candidate proofs. First, as for rup-lemma, the literals
of the lemma are assigned to false and the initial unit
propagations are performed. Second, it is checked that
the provided RAT candidates are exhaustive, and then the
corresponding cand-prf items are processed: A cand-prf

item consists of the ID of the candidate clause D, a list
of unit clause IDs, and a conflict clause ID. To check
a candidate proof, the literals of D \ {¬l} are assigned
to false, the listed unit propagations are performed, and
the conflict clause is checked to be actually conflict.
Afterwards, the assignment is rolled back to the state
before checking the candidate proof. Third, when all
candidate proofs have been checked, the lemma is added
to the clause map and the assignment is rolled back.
To simplify certificate generation in backward mode, we
allow candidate proofs referring to arbitrary, even invalid,
clause IDs. Those proofs must be ignored by the checker.

• conflict This is the last item of the certificate. It
specifies the ID of the conflict clause found by unit
propagation after adding the last lemma of the certificate
(root conflict). It is checked that the ID actually refers to
a conflict clause.

III. EVALUATION

A. Usage Example

We give a simple example on how to use our toolchain:
To verify that a formula stored in the DIMACS file

unsat.cnf is unsatisfiable, proceed as follows:

Create a (binary) drat-file
> kissat -q unsat.cnf unsat.drat
s UNSATISFIABLE
Process into proof (gratp) and lemmas (gratl) file
> gratgen unsat.cnf unsat.drat \

-o unsat.gratp -l unsat.gratl -b
s VERIFIED
Check against original formula
> gratchk unsat unsat.{cnf,gratl,gratp}
s VERIFIED UNSAT

1Blocked lemmas are useless for unsat proofs, such that there is no point
to include them in the certificate.

To verify that a formula stored in the DIMACS file
sat.cnf is satisfiable, proceed as follows:

Produce variable assignment,
as 0-terminated list of literals
> kissat -q sat.cnf | grep "ˆv" \

| sed -re ’s/ˆv//g’ > sat.vars
Check against original formula
> gratchk sat sat.{cnf,vars}
s VERIFIED SAT

B. MLtons Memory Manager

When running gratchk on machines with a lot of memory,
we ran into two problems with MLtons default memory
manager: First it will take half of the machine’s memory
before even starting to garbage collect. And, second, when
it garbage collects, it will try to keep allocated 8 times the
live memory size. Both behaviours are problematic: small
problems will consume huge amounts of memory, making
it impossible to verify many small problems in parallel on
the same machine. Also, most of the memory that gratchk
consumes is the storage for the formula and lemmas. Once
the checking starts, only little additional memory is needed.
However, MLtons memory manager will try to allocate 8 times
the live size, which includes the (potentially large) formula and
lemmas. In practice, this led to gratchk processes being killed
by the out-of-memory killer.

While there is no ideal solution currently supported by
MLton, we decided to apply a simple heuristic and limit the
memory available to gratchk to 10 times the formula and
lemma file size, and a minimum of 1GiB. In practice, this
can be achieved by system tools, or by a runtime option to
MLton, e.g.:

> gratchk @MLton max-heap 2G -- \
unsat unsat.{cnf,gratl,gratp}

C. Theoretical Complexity

Our toolchain has polynomial complexity in the size of
the input (drat) certificate and formula. While we have not
estimated the precise complexities, we give a rough argument
that the complexity is polynomial.

The first phase, gratgen, iterates over each clause in the
certificate, and puts it into a two-watched-literals (twl) data
structure. This clearly takes polynomial time. It then iterates
backwards over the clauses. For each clause, the (inverted)
literals are added as units, and then unit-propagation is per-
formed. This also takes polynomial time. In case of a RAT
clause, further clauses are gathered from the available clauses,
and for each of those, another unit propagation is done (again,
polynomial unit propagation for linearly many clauses). After
checking each clause, the twl data structure is reverted to the
state before that clause (which also takes polynomial time).

The second phase, gratchk, repeats the actions from the
first phase, but iterating in a forwards fashion, and using
extra information for unit propagation. Thus, it is also clearly
polynomial.

D. Empirical Evaluation

We have extensively benchmarked our toolchain in [4],
where we also compared it against the then-current versions
of drat-trim and LRAT [1].

Our tool has not significantly changed since then, and we
refer the reader to [4] for those results.

To check if our tool is still usable, we have run it on
problems from the 2022 SAT competition’s main track. We
considered the winning solver Kissat MABHyWalk, and the
highest ranked non-Kissat based solver SeqFROST-ERE-All.
We ran the solvers on all unsatisfiable problems they could
solve in the competition to regenerate the certificates, and
then used GRAT to verify the results. We benchmarked
two configurations for gratgen: single-threaded and 8 parallel
threads. Previous experiments have shown that more than 8
threads do not bring significant speedup.

1) Verified Problems: First of all, we could verify all 146
problems for Kissat and all 138 problems for SeqFROST.
The single-threaded gratgen timed out on one Kissat problem,
though.

2) Solving vs. Verification time: We compare the solving
time with the verification time. Let ts be the solving time,
and tv be the verification time, we compute, for each problem
the ratio r = tv/ts, and then count for what percentage of
the problems this ratio is less than .5, 1, 2, and 4. This is
a sensible measure, as we expect the verification time to be
related to the difficulty of the problem, and thus the solving
time. Also, it estimates the extra time required to get a verified
result. The result is displayed in the following table:

< .5 < 1 < 2 < 4 #problems
Kissat-j8 70.5 85.6 93.8 97.3 146
SeqFROST-j8 76.8 89.1 96.4 99.3 138
Kissat-j1 26.9 60.0 87.6 93.8 145
SeqFROST-j1 24.6 50.7 81.9 97.1 138

That is, with 8 threads, we can verify more than 80% of
the problems when allowing the same time for verification as
for solving. In single-threaded mode, it’s still more than half
of the problems. And more than 90% of the problems will be
solved when allowing a factor of 2 (8 threads) or 4 (1 thread),
respectively.

3) Drat Certificate vs Grat Certificate Size: Next, we
compare the size of the drat certificate produced by the SAT
solver to the size of the enriched (grat) certificate produced by
the first phase of our tool. This is of concern as the certificates
have to be stored on disk, and thus, should not be excessively
big. As for the time, we determine the ratio grat-size over
drat-size, and count the percentage of problems below certain
ratios.

< .5 < 1 < 2 < 4 #problems
Kissat 46.6 54.1 84.9 97.9 146
SeqFROST 50.0 54.3 81.9 97.8 138

We observe that the generated grat certificate is smaller
than the original drat certificate in more than half of the
cases, and rarely exceeds factor 4. This is due to the trimming
heuristics in gratgen, which, similar to drat-trim, tries hard to
eliminate as many useless lemmas as possible. In many cases,
this elimination removes more than the extra unit-propagation
information that is added by gratgen.

IV. FORMAL VERIFICATION

The crucial part of our toolchain is the gratchk tool, which
takes as input the original formula and a certificate in GRAT
format, and then verifies that the formula is actually unsatisfi-
able. It also supports a mode for verifying satisfiable formulas,
which takes a list of true literals as proof.

The gratchk tool is written in Standard ML, and compiled
using the MLton compiler. The top-level is an unverified
command line interface, which interprets the commands, and
parses the specified files into an array of integers. The ar-
ray contains a representation of the formula, followed by a
representation of the proof. It then calls the core functions
verify_sat_impl and verify_unsat_split_impl,
which are exported from an Isabelle formalization using Is-
abelle’s code generator.

val verify_sat_impl
: int array → nat → unit → (_, _) sum

val verify_unsat_split_impl
: int array → (′a → int *

′a)
→ nat → nat → nat *

′a → unit → (_, _) sum

For these functions, we have proved the following lemmas
in Isabelle:

theorem verify_sat_impl_correct:
<DBi 7→a DB>
verify_sat_impl DBi F_end

<λresult. DBi 7→a DB
* ↑(¬isl result =⇒ verify_sat_spec DB F_end)>

theorem verify_unsat_impl_correct:
<DBi 7→a DB>
verify_unsat_split_impl DBi prfn F_end it prf

<λresult. DBi 7→a DB
* ↑(¬isl result =⇒ verify_unsat_spec DB F_end)>

The preconditions of these Hoare triples state that the argu-
ment DBi points to an array holding the elements DB. This
array is not changed by the functions (it occurs unchanged in
the postcondition), and these Hoare-triples imply termination
of the program, as well as that it does not change any memory
apart from what it allocates itself.

The original formula is stored in DB[1..<F_end]. (DB[0]
is used as a guard by our implementation). The result of the
functions are from an exception monad, represented by a sum
type. The second parts of the postconditions state that, if no
exception is raised, the formula stored at DB[1..<F_end] is
satisfiable or unsatisfiable respectively. In case of the unsat
proof, the other parameters prfn, it, prf are used to
represent the proof, but they have no influence on the statement
of this lemma: regardless of their values, an accepted formula
is always unsat (If we pass nonsense, however, we will likely
get an exception).

To express when a formula is (un)sat, we have two (proved
equivalent) specifications. The first version relies on a function
F_α that maps lists of integers to our internal representation
of SAT formulas, and the predicate sat that specifies if a
formula is satisfiable:

definition verify_sat_spec DB F_end ≡
1 ≤ F_end ∧ F_end ≤ length DB

∧ (let lst = tl (take F_end DB) in
F_invar lst ∧ sat (F_α lst))

definition verify_unsat_spec DB F_end ≡
1 ≤ F_end ∧ F_end ≤ length DB

∧ (let lst = tl (take F_end DB) in
F_invar lst ∧ ¬sat (F_α lst))

These specifications state that F_end is in range, and that
DB[1..<F_end] (in Isabelle: tl (take F_end DB)) is a
valid (F_invar) representation of a satisfiable or unsatisfi-
able, respectively, formula.

To increase the trust in these specifications, we
prove them equivalent to a version that only relies
on basic list operations: First, we use the function
tokenize :: int list ⇒ int list list,
which splits a list into its zero-terminated components. To
sanity-check this function, we prove that, for a list that ends
with a zero (i.e., contains no open clause at the end), its
result is the unique inverse of concatenation:

definition concat0 ll = concat (map (λl . l@[0]) ll)
lemma unique_tokenization:

assumes l6=[] =⇒ last l = 0
shows ∃1ls. (0/∈

⋃
set (map set ls) ∧ concat0 ls = l)

and tokenize l = (THE ls.
0/∈

⋃
set (map set ls) ∧ concat0 ls = l)

where THE is the definite description operator.
Next, we define an assignment from integers to Booleans

to be consistent iff a negative value is mapped to the opposite
of its absolute value:

definition assn_consistent :: (int ⇒ bool) ⇒ bool
where assn_consistent σ

= (∀x. x6=0 =⇒ ¬ σ (-x) = σ x)

Finally, we characterize an (un)satisfiable input by the
(non)existence of a consistent assignment that assigns at least
one literal of each clause to true. Thus, we prove the following
alternative characterizations of our specifications:

lemma verify_sat_spec DB F_end = (
1≤F_end ∧ F_end ≤ length DB ∧ (
let lst = tl (take F_end DB) in

(lst 6=[] =⇒ last lst = 0)
∧ (∃σ. assn_consistent σ

∧ (∀C∈set (tokenize 0 lst). ∃l∈set C. σ l))))

lemma verify_unsat_spec DB F_end = (
1 < F_end ∧ F_end ≤ length DB ∧ (
let lst = tl (take F_end DB) in

last lst = 0
∧ (@σ. assn_consistent σ

∧ (∀C∈set (tokenize 0 lst). ∃l∈set C. σ l))))

In the case of unsatisfiability, the bounds have been adjusted
to exclude the empty formula, which is trivially satisfiable.

A. Trusted Code Base

Our approach relies on the correctness of the following
components

• Isabelle/HOL’s inference kernel.
• Isabelle/HOL’s code generator to Standard ML.
• The Imperative/HOL extension of the code generator.
• The correct formalization of what a Hoare-triple means.
• The correct specification of the correctness properties.
• The command line interface and DIMACs file parser.
• The correctness of the ML compiler and execution envi-

ronment.
Where possible, we have tried to keep these trusted compo-

nents as simple as possible. For example, we have proved two
equivalent forms of the correctness specification, and limited
the unverified parser to parse the DIMACs file into an array of
integers. The interpretation of these integers as list of clauses
is done inside Isabelle.

REFERENCES

[1] M. Heule, W. Hunt, M. Kaufmann, and N. Wetzler. Efficient, verified
checking of propositional proofs. In Proc. of ITP. Springer, 2017.

[2] P. Lammich. Efficient verified (UN)SAT certificate checking. In Proc. of
CADE. Springer, 2017.

[3] P. Lammich. The GRAT tool chain - efficient (UN)SAT certificate
checking with formal correctness guarantees. In SAT, pages 457–463,
2017.

[4] P. Lammich. Efficient verified (UN)SAT certificate checking. J. Autom.
Reason., 64(3):513–532, 2020.

[5] N. Wetzler, M. J. H. Heule, and W. A. Hunt. Drat-trim: Efficient checking
and trimming using expressive clausal proofs. In Proc. of SAT 2014, pages
422–429. Springer, 2014.

	Introduction
	Proof Format
	Evaluation
	Usage Example
	MLtons Memory Manager
	Theoretical Complexity
	Empirical Evaluation
	Verified Problems
	Solving vs. Verification time
	Drat Certificate vs Grat Certificate Size

	Formal Verification
	Trusted Code Base

	References

