
Verified LRAT and LPR Proof Checking
with cake_lpr

Yong Kiam Tan Marijn J. H. Heule Magnus O. Myreen

I. SUMMARY

We present the cake_lpr proof checker [1] which is capa-
ble of checking proofs in either Linear RAT (LRAT) or Linear
PR (LPR) proof formats. The LPR format is a backwards-
compatible extension of LRAT. The checker is formally veri-
fied using CakeML and the HOL4 theorem prover; its formal
proof is discussed in [1] and briefly in Section III. The DRAT
and DPR proof formats are supported using DRAT-trim and
DPR-trim as preprocessing tools, respectively.
The verified proof checker is available at:

https://github.com/tanyongkiam/cake_lpr
The DRAT-trim and DPR-trim tools are available at:

https://github.com/marijnheule/drat-trim
https://github.com/marijnheule/dpr-trim

A. Example
An outline of an end-to-end LRAT proof checking run is as

follows:
Assume the problem is input.cnf in DIMACS

... run SAT solver on input.cnf ...

... generate proof file input.drat ...

Run drat-trim on the DRAT proof and
generate LRAT file

drat-trim input.cnf input.drat -L input.lrat

Run cake_lpr on the resulting LRAT proof

cake_lpr input.cnf input.lrat

If the proof checks successfully, cake_lpr will print to
standard output:
s VERIFIED UNSAT

All other error messages, such as proof checking error,
parsing error, out-of-memory error, will be printed to stderr.
Solvers capable of generating LRAT proofs directly can skip
the use of DRAT-trim. End-to-end proof checking for LPR
proofs can be done similarly, using DPR-trim as the pre-
processor for DPR proofs. It is also possible to convert DPR
proofs to DRAT, then use DRAT-trim, but this approach is
not recommended as it is significantly slower than checking
DPR (and LPR) proofs directly [1].

II. SUPPORTED PROOF FORMATS

Formal descriptions of all proof formats are available in
the cited publications [1], [2] and online. We give brief
descriptions of the formats with concrete examples.

A. DRAT and LRAT

The DRAT format consists of a list of clause addition or
deletion steps, one per line. All lines are terminated by 0.
Each added clause must have RAT redundancy with respect
to the current formula.
<CLAUSE> 0
d <CLAUSE> 0

Concrete example:
1 -2 3 0 # Add clause x_1,!x_2,x_3
d 1 2 -3 0 # Del clause x_1,x_2,!x_3

The DRAT-trim tool can be used as a preprocessor to
automatically convert an input DRAT proof to LRAT format.
The latter format extends DRAT with a notion of clause IDs
and proof hints for each line. The input CNF is assumed to
be given IDs in ascending order from 1 to n where n is the
number of clauses in the file. Addition lines in LRAT have the
following format, where <ID> is a positive integer, <IDs> is
a list of <ID>, and [...]* denotes 0 or more repetitions of
the enclosed block:
<ID> <CLAUSE> 0 <IDs> [-<ID> <IDs>]* 0

The first <ID> is the clause ID to be assigned to
<CLAUSE>. If <CLAUSE> has RAT redundancy, then the
first literal in the clause is the pivot literal. The first block of
<IDs> lists unit propagation steps starting from the blocking
assignment for <CLAUSE>. If <CLAUSE> has RAT redun-
dancy, then this first block is followed by 0 or more -<ID>
<IDs> blocks, where -<ID> refers to the <ID>-th clause
in the RAT proof and the corresponding <IDs> indicate unit
propagation steps for that clause.

Deletion steps are written with a list of clause IDs rather
than clauses. All the clauses with IDs in <IDs> are deleted.
<ID> d <IDs> 0

Concrete example:
Add clause x_1,!x_2,x_3 at clause ID 15
with RAT on pivot !x_2
15 -2 1 3 0 4 13 7 10 8 -5 2 4 -10 3 5 0
Del clause IDs 13 14 15
(ID 16 in front of the line is ignored)
16 d 13 14 15 0

A complexity analysis for the LRAT proof format is given
in [2, Theorem 2], where asymptotically (keeping all parame-
ters constant except number n of steps in proofs), the complex-
ity is reported as O(n2 log n); cake_lpr slightly improves

https://github.com/tanyongkiam/cake_lpr
https://github.com/marijnheule/drat-trim
https://github.com/marijnheule/dpr-trim

⊢ cake_lpr_run cl fs mc ms ⇒
machine_sem mc (basis_ffi cl fs) ms ⊆

extend_with_resource_limit
{ Terminate Success (cake_lpr_io_events cl fs) } ∧

∃ out err .
extract_fs fs (cake_lpr_io_events cl fs) =

Some (add_stdout (add_stderr fs err) out) ∧
if . . .
else if length cl = 3 then
if out = «s VERIFIED UNSAT\n» then

inFS_fname fs (el 1 cl) ∧
∃ fml .

parse_dimacs (all_lines fs (el 1 cl)) = Some fml ∧
unsatisfiable (interp fml)

else out = «»
else . . .

} (1)}
(2) (3)

(4)

Fig. 1. The end-to-end correctness theorem for the CakeML LPR proof checker. (Some irrelevant cases are elided with . . . for brevity).

the asymptotic bound to O(n2) because it uses constant-
time rather than logarithmic-time lookup data structures [1].
Empirically, we have observed that most proofs generated by
solvers in past SAT competitions are dominated by simple
(non-RAT) steps. In that case, one may expect near-linear
scaling from cake_lpr.

B. DPR and LPR

The DPR format extends DRAT so that added clauses are
propagation redundant with respect to the current formula.
Here, <WIT> is a list of literals which must start with the first
literal in <CLAUSE>. Note that this is syntactically backwards
compatible with DRAT (when <WIT> is empty).

<CLAUSE> <WIT> 0

The DPR-trim tool can be used as a preprocessor to
automatically convert an input DPR proof to LPR format. The
latter format extends DPR with clause IDs and proof hints
in the same way LRAT extends DRAT. The only syntactic
addition is the optional <WIT> after <CLAUSE>.

<ID> <CLAUSE> <WIT> 0 <IDs> [-<ID> <IDs>]* 0

The proof checking procedure for LPR is backwards com-
patible with LRAT, using <IDs> and [-<ID> <IDs>]*
as unit propagation hints for propagation redundancy [1].
Deletion lines are identical for LPR and LRAT.
Concrete example:
Add clause x_1,!x_2,x_3 at clause ID 15
with PR witness !x_2,x_5
15 -2 1 3 -2 5 0 4 13 7 10 8 -5 2 4 -10 3 5 0
Del clause IDs 13 14 15
(ID 16 in front of the line is ignored)
16 d 13 14 15 0

The proof checking procedure for LPR is essentially the
same as LRAT, i.e., with O(n2) complexity (assuming all other
parameters are held constant).

III. PROOF CHECKER VERIFICATION

Our proof checker, cake_lpr, is formally verified down
to the level of its x64 machine code implementation, which
eliminates the possibility of bugs arising from, e.g., compiler
errors, code extraction, or other, unverified additions to (veri-
fied) source code. This is achieved by compiling its formally
verified CakeML source code implementation, with a formally
verified compiler for CakeML [1].

The key correctness theorem is shown in Fig. 1. To infor-
mally summarize:

• Line (1) assumes that the cake_lpr binary is executed
in an x64 machine environment set up according to the
standard CakeML assumptions.

• Lines (2) guarantees that cake_lpr will terminate suc-
cessfully (i.e., no out of bounds array accesses, etc.); it
may run out of either heap or stack memory (resource
limits).

• Lines (3) says that, according to the CakeML file system
model, there will be some strings printed to standard
output and standard error.

• Lines (4) says (among other things) that, IF the string
“s VERIFIED UNSAT” is printed onto standard output,
then the first command line argument corresponds to a
file, which parsed in DIMACS format, to a formula that
is unsatisfiable. The DIMACS parser is verified to be left
inverse to the DIMACS printer.

REFERENCES

[1] Y. K. Tan, M. J. H. Heule, and M. O. Myreen, “cake_lpr: Verified
propagation redundancy checking in CakeML,” in TACAS, ser. LNCS,
J. F. Groote and K. G. Larsen, Eds., vol. 12652. Springer, 2021, pp.
223–241.

[2] L. Cruz-Filipe, M. J. H. Heule, W. A. Hunt Jr., M. Kaufmann, and
P. Schneider-Kamp, “Efficient certified RAT verification,” in CADE, ser.
LNCS, L. de Moura, Ed., vol. 10395. Springer, 2017, pp. 220–236.

	Summary
	Example

	Supported Proof Formats
	DRAT and LRAT
	DPR and LPR

	Proof Checker Verification
	References

