
VERIPB and CAKEPB in the
SAT Competition 2023

Bart Bogaerts Ciaran McCreesh Magnus O. Myreen Jakob Nordström Andy Oertel Yong Kiam Tan

I. SUMMARY

The pseudo-Boolean proof format used for the proof checker
VERIPB [1] supports proof logging for decision, enumeration,
and optimization problems, as well as problem reformulations,
all in a unified format. So far, VERIPB has been used
for proof logging of enhanced SAT solving techniques [2],
[3], pseudo-Boolean CDCL-based solving [4], constraint
programming [5], [6], subgraph solving [7], [8], and MaxSAT
solving [9], [10], and this list of applications is expected to
keep growing. This description briefly summarizes how a
restricted version of the proof format can be used to certify
unsatisfiability of CNF formulas in the SAT competition
2023. A complete documentation of the proof format can be
found at https://gitlab.com/MIAOresearch/software/VeriPB/-/
blob/satcomp2023_checker/satcomp23/documentation_SAT_
competition_2023.pdf.

II. QUICKSTART GUIDE FOR BOOLEAN SATISFIABILITY
(SAT) PROOF LOGGING

This section contains the bare minimum of information
needed to use VERIPB and CAKEPB as proof checkers
for Boolean satisfiability (SAT) solvers with pseudo-Boolean
proof logging. A good way to learn more (in addition to
reading this document) might be to study the example files
in the directory tests/integration_tests/correct/ in
the repository [1] and run VERIPB with the options
--trace --useColor, which will output detailed information
about the proofs and the proof checking.

A. Running the Proof Checkers

If a SAT solver with pseudo-Boolean proof logging
has solved the instance input.cnf, the generated proof
input.pbp can be checked by VERIPB and CAKEPB by
runnning the following commands:

Translate to kernel format proof
veripb --cnf --proofOutput translated.pbp \
input.cnf input.pbp

Check the kernel proof
cake_pb_cnf input.cnf translated.pbp

The first command recompiles the pseudo-Boolean proof
input.pbp into a more restricted “kernel-format” proof
translated.pbp using VERIPB, after which the kernel proof
is checked using CAKEPB. In case of successful recompilation,
VERIPB will output:

Running veripb as shown above
...
Verification succeeded

Upon successful proof checking, CAKEPB will report success
on the standard output stream:
Running cake_pb_cnf as shown above
s VERIFIED UNSAT

All errors are reported on standard error.

B. Proof Format
The syntactic format of a pseudo-Boolean proof of unsat-

isfiability for a CNF formula as expected by the version of
VERIPB proposed for the SAT competition 2023 is
pseudo-Boolean proof version 2.0
f ⟨N⟩
Derivation section
output NONE
conclusion UNSAT : ⟨id⟩
end pseudo-Boolean proof

where ⟨N⟩ should be the number of clauses in the formula
and Derivation section should contain the actual proof which
derives contradiction as the pseudo-Boolean constraint with
constraint ID ⟨id⟩.

In pseudo-Boolean format, a disjunctive clause like

x1 ∨ x2 ∨ x3 (1a)

is represented as the inequality

x1 + x2 + x3 ≥ 1 (1b)

claiming that at least one of the literals in the clause is true
(i.e., takes value 1), and this inequality is written as
+1 x1 +1 ∼x2 +1 x3 >= 1 ;

in the OPB format [11] used by VERIPB. The proof checker
can also read CNF formulas in the DIMACS and WDIMACS
formats used for SAT solving and MaxSAT solving, respectively.
For such files, VERIPB will parse a clause
1 -2 3 0

to be identical to (1b), and the variables should be referred to
in the pseudo-Boolean proof file as x1, x2, x3, et cetera.

DRAT proofs can be transformed into valid VERIPB proofs
by simple syntactic manipulations. Most of the proof resulting
from a CDCL SAT solver is the ordered sequence of clauses
learned during conflict analysis. Since all such clauses are
guaranteed to be reverse unit propagation (RUP) clauses, the
easiest way to provide pseudo-Boolean proof logging for a
learned clause (1a) would be to write

https://gitlab.com/MIAOresearch/software/VeriPB/-/blob/satcomp2023_checker/satcomp23/documentation_SAT_competition_2023.pdf
https://gitlab.com/MIAOresearch/software/VeriPB/-/blob/satcomp2023_checker/satcomp23/documentation_SAT_competition_2023.pdf
https://gitlab.com/MIAOresearch/software/VeriPB/-/blob/satcomp2023_checker/satcomp23/documentation_SAT_competition_2023.pdf

rup +1 x1 +1 ∼x2 +1 x3 >= 1 ;

in the derivation section of the pseudo-Boolean proof.
If instead the clause (1a) is a resolution asymmetric tautology

(RAT) clause that is RAT on the literal x1, then this is written
as

red +1 x1 +1 ∼x2 +1 x3 >= 1 ; x1 -> 1

in the pseudo-Boolean proof using the more general
redundance-based strengthening rule. And if the RAT literal
would instead have been x2, this would have been indicated
by ending the proof line above by x2 -> 0 instead.

Finally, in order to delete the clause (1a), the deletion
command

del spec +1 x1 +1 ∼x2 +1 x3 >= 1 ;

is issued. An important difference from DRAT proofs is that
deletion is made also for unit clauses, i.e., clauses containing
only a single literal—DRAT proof checkers typically ignore
such deletion commands. Another crucial difference is that all
clauses learned during CDCL execution need to be written
down in the proof log, including unit clauses. If unit clauses are
missing in a DRAT proof, the proof checkers will typically be
helpful and silently infer and add the missing clauses. No such
patching of formally incorrect proofs is offered by VERIPB.

It should be noted, though, that if all the reasoning
performed by some particular SAT solver can efficiently
be captured by standard DRAT proof logging, then there
is no real reason to use pseudo-Boolean proof logging for
that solver. Pseudo-Boolean proof logging becomes relevant
only if the solver uses more advanced techniques such as,
for instance, cardinality reasoning, Gaussian elimination,
or symmetry breaking. We refer the reader to [2] and [3],
respectively, for detailed descriptions of how to do efficient
pseudo-Boolean proof logging for the latter two techniques. A
detailed description of the cutting planes proof system and
proof steps supported in the augmented for VERIPB and the
kernel format for CAKEPB is available at https://gitlab.com/
MIAOresearch/software/VeriPB/-/blob/satcomp2023_checker/
satcomp23/documentation_SAT_competition_2023.pdf.

III. FORMALLY VERIFIED PROOF CHECKING

The kernel proof checker CAKEPB has been formally
verified in the HOL4 theorem prover [12] using the CAKEML
suite of tools for program verification, extraction, and com-
pilation [13]–[15]. In this section, we present the verification
guarantees for CAKEPB_CNF, a version of CAKEPB equipped
with a DIMACS CNF parser frontend for UNSAT proof
checking with pseudo-Boolean proof logging.

A. Verified Correctness Theorem for CAKEPB_CNF

The end-to-end verified correctness theorem for CAKEPB_-
CNF is shown in Figure 1. This theorem can be intuitively
understood in four parts, corresponding to the indicated lines
(2)–(5):

• The theorem assumes (2) that the CAKEML-compiled
machine code for CAKEPB_CNF is executed in an x64

machine environment set up correctly for CAKEML. The
definition of cake_pb_cnf_run is shown below, where the
first line (wfcl cl ∧ wfFS fs ∧ ...) says the command line
cl and filesystem fs match the assumptions of CAKEML’s
FFI model. The second line says that the compiled code
(cake_pb_cnf_code) is correctly set up for execution on
an x64 machine.

cake_pb_cnf_run cl fs mc ms
def
=

wfcl cl ∧ wfFS fs ∧ STD_streams fs ∧ hasFreeFD fs ∧
installed_x64 cake_pb_cnf_code mc ms

• Under these assumptions, the CAKEPB_CNF program is
guaranteed to never crash (3). However, it may run out
of resources such as heap or stack memory (extend_-
with_resource_limit ...). In these cases, CAKEPB_CNF will
fail gracefully and report out-of-heap or out-of-stack on
standard error.

• Upon termination, the CAKEPB_CNF program will output
some (possibly empty) strings out and err to the standard
output and standard error streams, respectively (4).

• The key verification guarantee (5) is that, whenever the
string “s VERIFIED UNSAT” is printed to standard output,
the input CNF file (first command line argument) parses
in DIMACS format to a CNF which is unsatisfiable. No
other output is possible on standard output; error strings
are always printed to standard error.

Internally, CAKEPB_CNF transforms input CNF clauses (in
DIMACS format) to normalized pseudo-Boolean constraints,
as exemplified by (1a) and (1b). This transformation is
formally verified to preserve satisfiability as part of the end-
to-end correctness theorem shown in Figure 1. Note that the
CAKEPB_CNF tool has an essentially identical correctness
theorem to an existing verified Boolean unsatisfiability proof
checking tool [16]. In fact, these tools share exactly the same
definitions of DIMACS CNF parsing, Boolean satisfiability
semantics, and all of the CAKEML’s standard assumptions.

B. Complexity and Empirical Evaluation

All of the commands in the kernel format are designed to
minimize the need to search over the entire constraint database.
For example, each implicational and deletion proof step can be
performed in linear time with respect to the size of that step.

The only proof steps that scale linearly with respect to the
size of the constraint database are redundancy and dominance-
based strengthening steps. For either of these steps, the proof
checker potentially needs to loop over the entire constraint
database to check all the necessary proof goals. However, the
maximum size of the database is linear in the size of the input
formula and the proof. Therefore, the overall complexity of the
verified proof checker is polynomial in the size of the input
formula and proof, as required.

Table I shows an empirical evaluation of the verified proof
checking pipeline on a selected suite of example proofs,
generated using BREAKID [17]1 and KISSAT [18]2 to solve

1https://bitbucket.org/krr/breakid/src/veriPB/
2https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork

https://gitlab.com/MIAOresearch/software/VeriPB/-/blob/satcomp2023_checker/satcomp23/documentation_SAT_competition_2023.pdf
https://gitlab.com/MIAOresearch/software/VeriPB/-/blob/satcomp2023_checker/satcomp23/documentation_SAT_competition_2023.pdf
https://gitlab.com/MIAOresearch/software/VeriPB/-/blob/satcomp2023_checker/satcomp23/documentation_SAT_competition_2023.pdf

⊢ cake_pb_cnf_run cl fs mc ms ⇒ (2)
machine_sem mc (basis_ffi cl fs) ms ⊆

extend_with_resource_limit
{ Terminate Success (cake_pb_cnf_io_events cl fs) } ∧

 (3)

∃ out err .
extract_fs fs (cake_pb_cnf_io_events cl fs) =

SOME (add_stdout (add_stderr fs err) out) ∧

 (4)

if out = «s VERIFIED UNSAT\n» then
LENGTH cl = 3 ∧ inFS_fname fs (EL 1 cl) ∧
∃ fml .

parse_dimacs (all_lines fs (EL 1 cl)) = SOME fml ∧
unsatisfiable (interp fml)

else out = «»

(5)

Fig. 1: The end-to-end correctness theorem for the CAKEML pseudo-Boolean proof checker with a CNF parser

TABLE I: Example timings for verified proof checking using
VERIPB and CAKEPB_CNF. All times are in seconds.

Benchmark VeriPB Time (s) CakePB Time (s)

queen14_14.col.14.cnf 6.5 52.3
harder-php{...}.cnf 9.3 30.5
Pb-chnl15-16_c18.cnf 13 43.2
tseitin_n104_d3.cnf 4.2 3.9
rphp_p6_r28.cnf 123 68.2

SAT competition instances of the last years and theoretical
instances.

ACKNOWLEDGEMENTS

We wish to acknowledge the monumental contributions of
Stephan Gocht [19], without whom there would not have been
any pseudo-Boolean proof checker.

REFERENCES

[1] “VeriPB: Verifier for pseudo-Boolean proofs,” https://gitlab.com/
MIAOresearch/software/VeriPB.

[2] S. Gocht and J. Nordström, “Certifying parity reasoning efficiently using
pseudo-Boolean proofs,” in Proceedings of the 35th AAAI Conference
on Artificial Intelligence (AAAI ’21), Feb. 2021, pp. 3768–3777.

[3] B. Bogaerts, S. Gocht, C. McCreesh, and J. Nordström, “Certified
symmetry and dominance breaking for combinatorial optimisation,” in
Proceedings of the 36th AAAI Conference on Artificial Intelligence
(AAAI ’22), Feb. 2022, pp. 3698–3707.

[4] S. Gocht, R. Martins, J. Nordström, and A. Oertel, “Certified CNF
translations for pseudo-Boolean solving,” in Proceedings of the 25th
International Conference on Theory and Applications of Satisfiability
Testing (SAT ’22), ser. Leibniz International Proceedings in Informatics
(LIPIcs), vol. 236, Aug. 2022, pp. 16:1–16:25.

[5] J. Elffers, S. Gocht, C. McCreesh, and J. Nordström, “Justifying all
differences using pseudo-Boolean reasoning,” in Proceedings of the 34th
AAAI Conference on Artificial Intelligence (AAAI ’20), Feb. 2020, pp.
1486–1494.

[6] S. Gocht, C. McCreesh, and J. Nordström, “An auditable constraint
programming solver,” in Proceedings of the 28th International Conference
on Principles and Practice of Constraint Programming (CP ’22), ser.
Leibniz International Proceedings in Informatics (LIPIcs), vol. 235, Aug.
2022, pp. 25:1–25:18.

[7] ——, “Subgraph isomorphism meets cutting planes: Solving with certified
solutions,” in Proceedings of the 29th International Joint Conference on
Artificial Intelligence (IJCAI ’20), Jul. 2020, pp. 1134–1140.

[8] S. Gocht, R. McBride, C. McCreesh, J. Nordström, P. Prosser, and
J. Trimble, “Certifying solvers for clique and maximum common
(connected) subgraph problems,” in Proceedings of the 26th International
Conference on Principles and Practice of Constraint Programming
(CP ’20), ser. Lecture Notes in Computer Science, vol. 12333. Springer,
Sep. 2020, pp. 338–357.

[9] D. Vandesande, W. De Wulf, and B. Bogaerts, “QMaxSATpb: A certified
MaxSAT solver,” in Proceedings of the 16th International Conference
on Logic Programming and Non-monotonic Reasoning (LPNMR ’22),
ser. Lecture Notes in Computer Science, vol. 13416. Springer, Sep.
2022, pp. 429–442.

[10] J. Berg, B. Bogaerts, J. Nordström, A. Oertel, and D. Vandesande,
“Certified core-guided MaxSAT solving,” in Proceedings of CADE-29,
2023, accepted for publication.

[11] O. Roussel and V. M. Manquinho, “Input/output format and solver
requirements for the competitions of pseudo-Boolean solvers,” Jan. 2016,
revision 2324. Available at http://www.cril.univ-artois.fr/PB16/format.pdf.

[12] K. Slind and M. Norrish, “A brief overview of HOL4,” in TPHOLs, ser.
LNCS, O. A. Mohamed, C. A. Muñoz, and S. Tahar, Eds., vol. 5170.
Springer, 2008, pp. 28–32.

[13] Y. K. Tan, M. O. Myreen, R. Kumar, A. C. J. Fox, S. Owens,
and M. Norrish, “The verified CakeML compiler backend,” J. Funct.
Program., vol. 29, p. e2, 2019.

[14] A. Guéneau, M. O. Myreen, R. Kumar, and M. Norrish, “Verified
characteristic formulae for CakeML,” in ESOP, ser. LNCS, H. Yang,
Ed., vol. 10201. Springer, 2017, pp. 584–610.

[15] M. O. Myreen and S. Owens, “Proof-producing translation of higher-
order logic into pure and stateful ML,” J. Funct. Program., vol. 24, no.
2-3, pp. 284–315, 2014.

[16] Y. K. Tan, M. J. H. Heule, and M. O. Myreen, “cake_lpr: Verified
propagation redundancy checking in CakeML,” in TACAS, ser. LNCS,
J. F. Groote and K. G. Larsen, Eds., vol. 12652. Springer, 2021, pp.
223–241.

[17] “Breakid,” https://bitbucket.org/krr/breakid.
[18] “Kissat SAT solver,” http://fmv.jku.at/kissat/.
[19] S. Gocht, “Certifying correctness for combinatorial algorithms by using

pseudo-Boolean reasoning,” Ph.D. dissertation, Lund University, Lund,
Sweden, Jun. 2022.

https://gitlab.com/MIAOresearch/software/VeriPB
https://gitlab.com/MIAOresearch/software/VeriPB
http://www.cril.univ-artois.fr/PB16/format.pdf
https://bitbucket.org/krr/breakid
http://fmv.jku.at/kissat/

	Summary
	Quickstart Guide for Boolean Satisfiability (SAT) Proof Logging
	Running the Proof Checkers
	Proof Format

	Formally Verified Proof Checking
	Verified Correctness Theorem for CakePB_cnf
	Complexity and Empirical Evaluation

	References

